In Memoriam

Renowned scientist and scholar lived to 101

Rutgers Creates Joachim Messing Endowed Chair in Molecular Genetics

The Rutgers University Board of Governors today approved the creation of the Joachim Messing Endowed Chair in Molecular Genetics.

Shared Genetics in Humans and Roundworms Shed Light on Infertility, Rutgers Study Finds

McKim Lab Postdoc featured in GSA blog

GSA's Spotlight features authors who make an impact while still in undergrad.

Dr. Gallavotti earns NSF award for latest research initiative

Dismukes research holds great promise for advancing Sustainable Energy

Search for low-cost platinum alternative leads to new technology

Located on Busch Campus of Rutgers, The State University of New Jersey, the Waksman Institute of Microbiology is an interdisciplinary research institute devoted to excellence in basic research. Focus areas include developmental biology, cell biology, biochemistry, structural biology, genetics, and genomics.

To support the educational mission of Rutgers, Waksman faculty members hold appointments in academic departments throughout the university. Our researchers train undergraduate students, graduate students, and post-doctoral fellows, as well as engage high school students in research through an outreach program.

Latest News

Andrea Gallavotti, Assistant Professor in the Department of Plant Biology at the Waksman Institute, is a Co-PI of a recently awarded five-year collaborative grant. The project, sponsored by the National Science Foundation and titled “Genomic and Synthetic Approaches Linking Auxin Signaling Modules to Functional Domains in Maize”, seeks to understand how auxin signaling regulates the formation of specific functional domains in maize inflorescences (

Discovered in bacteria as viral defense mechanism, researchers program C2c2 to manipulate cellular RNA using CRISPR

Dr. Ruth Steward is a Principal Investigator at the Waksman Institute of Microbiology and a member of the Molecular Biology and Biochemistry Department at Rutgers University, New Jersey. Her research focuses on the role of the new Zfrp8 gene, identified in her lab, in hematopoiesis and oogenesis.

Pal Maliga, distinguished professor in the Waksman Institute of Microbiology and professor of plant biology in the Department of Plant Biology and Pathology, has won the Lawrence Bogorad Awar

From Rutgers Today Pioneering Rutgers professors Richard H. Ebright and Joachim Messing were elected to the prestigious American Academy of Arts and Sciences today. The American Academy of Arts and Sciences is one of the country’s oldest learned societies and independent policy research centers. It convenes academic, business and government leaders to respond to challenges facing  the nation and world.

Recent Publications

Zhang, W, Messing J.  In Press.  PacBio RS for gene family studies. Methods in Molecular Biology. Haplotyping.
Wu, Y, Messing J.  In Press.  Understanding and improving protein traits in maize seeds. Achieving Sustainable Maize Cultivation.
Gates, C, Ananyev GM, Dismukes C.  2016.  The strontium inorganic mutant of the water oxidizing center (CaMn4O5) of PSII improves WOC efficiency but slows electron flux through the terminal acceptors.. Biochim Biophys Acta.. 1857(9):1550-1560. Abstractgates_2016_woc.pdf
Herein we extend prior studies of biosynthetic strontium replacement of calcium in PSII-WOC core particles to characterize whole cells. Previous studies of Thermosynechococcus elongatus found a lower rate of light-saturated O2 from isolated PSII-WOC(Sr) cores and 5–8 × slower rate of oxygen release. We find similar properties in whole cells, and show it is due to a 20% larger Arrhenius activation barrier for O2 evolution. Cellular adaptation to the sluggish PSII-WOC(Sr) cycle occurs in which flux through the QAQB acceptor gate becomes limiting for turnover rate in vivo. Benzoquinone derivatives that bind to QB site remove this kinetic chokepoint yielding 31% greater O2 quantum yield (QY) of PSII-WOC(Sr) vs. PSII-WOC(Ca). QY and efficiency of the WOC(Sr) catalytic cycle are greatly improved at low light flux, due to fewer misses and backward transitions and 3-fold longer lifetime of the unstable S3 state, attributed to greater thermodynamic stabilization of the WOC(Sr) relative to the photoactive tyrosine YZ. More linear and less cyclic electron flow through PSII occurs per PSII-WOC(Sr). The organismal response to the more active PSII centers in Sr-grown cells at 45 °C is to lower the number of active PSII-WOC per Chl, producing comparable oxygen and energy per cell. We conclude that redox and protonic energy fluxes created by PSII are primary determinants for optimal growth rate of T. elongatus. We further conclude that the (Sr-favored) intermediate-spin S = 5/2 form of the S2 state is the active form in the catalytic cycle relative to the low-spin S = 1/2 form.
Krishnan, A, Zhang S, Liu Y, Tadmori KA, Bryant DA, Dismukes GC.  2016.  Consequences of ccmR deletion on respiration, fermentation and H2 metabolism in cyanobacterium Synechococcus sp. PCC 7002. Biotechnol Bioeng. Abstract2016_biotechbioeng_krishnan_ccmr_ko_bit25913.pdf
CcmR, a LysR-type transcriptional regulator, represses the genes encoding components of the high-affinity carbon concentration mechanism in cyanobacteria. Unexpectedly, deletion of the ccmR gene was found to alter the expression of the terminal oxidase and fermentative genes, especially the hydrogenase operon in the cyanobacterium Synechococcus sp. PCC 7002. Consistent with the transcriptomic data, the deletion strain exhibits flux increases (30-50%) in both aerobic O2 respiration and anaerobic H2 evolution. To understand how CcmR influences anaerobic metabolism, the kinetics of autofermentation were investigated following photoautotrophic growth. The autofermentative H2 yield increased by 50% in the CcmR deletion strain compared to the wild-type strain, and increased to 160% (within 20 h) upon continuous removal of H2 from the medium ("milking") to suppress uptake. Consistent with this greater reductant flux to H2 , the mutant excreted less lactate during autofermentation (NAD(P)H consuming pathway). To enhance the rate of NADH production during anaerobic metabolism, the ccmR mutant was engineered to introduce GAPDH overexpression (more NADH production) and LDH deletion (less NADH consumption). The triple mutant (ccmR deletion + GAPDH overexpression + LDH deletion) showed 6-8-fold greater H2 yield than the WT strain, achieving conversion rates of 17 nmol 108 cells-1 h-1 and yield of 0.87 H2 per glucose equivalent (8.9% theoretical maximum). Simultaneous monitoring of the intracellular NAD(P)H concentration and H2 production rate by these mutants reveals an inverse correspondence between these variables indicating hydrogenase-dependent H2 production as a major sink for consuming NAD(P)H in preference to excretion of reduced carbon as lactate during fermentation.