Dismukes research holds great promise for advancing Sustainable Energy

Research for low-cost replacement for platinum leads to patent-pending technology

Evelyn M. Witkin recipient of the 14th Annual Wiley Prize

Honor recognizes groundbreaking work in Biomedical Sciences

Waksman Funded Projects

A list of currently funded research projects as reported by various funding sources.

Located on Busch Campus of Rutgers, The State University of New Jersey, the Waksman Institute of Microbiology is an interdisciplinary research institute devoted to excellence in basic research. Focus areas include developmental biology, cell biology, biochemistry, structural biology, genetics, and genomics.

To support the educational mission of Rutgers, Waksman faculty members hold appointments in academic departments throughout the university. Our researchers train undergraduate students, graduate students, and post-doctoral fellows, as well as engage high school students in research through an outreach program.

Recent Publications

Gallavotti, A. and Whipple, CJ.  2015.  Positional cloning in maize (Zea mays subsp. mays, Poaceae). Applications in Plant Sciences. 3:1400092.gallavotti_and_whipple_2015.pdfWebsite
Hassan, HM, Degen D, Jang K H, Ebright RH, Fenical W.  2015.  Salinamide F, new depsipeptide antibiotic and inhibitor of bacterial RNA polymerase from a marine-derived Streptomyces sp.. The Journal of antibiotics. 68(3):206-9.
Chakraborty, A, Mazumder A, Lin M, Hasemeyer A, Xu Q, Wang D, Ebright YW, Ebright RH.  2015.  Site-specific incorporation of probes into RNA polymerase by unnatural-amino-acid mutagenesis and Staudinger-Bertozzi ligation.. Methods in molecular biology (Clifton, N.J.). 1276:101-31. Abstract
A three-step procedure comprising (1) unnatural-amino-acid mutagenesis with 4-azido-phenylalanine, (2) Staudinger-Bertozzi ligation with a probe-phosphine derivative, and (3) in vitro reconstitution of RNA polymerase (RNAP) enables the efficient site-specific incorporation of a fluorescent probe, a spin label, a cross-linking agent, a cleaving agent, an affinity tag, or any other biochemical or biophysical probe, at any site of interest in RNAP. Straightforward extensions of the procedure enable the efficient site-specific incorporation of two or more different probes in two or more different subunits of RNAP. We present protocols for synthesis of probe-phosphine derivatives, preparation of RNAP subunits and the transcription initiation factor σ, unnatural amino acid mutagenesis of RNAP subunits and σ, Staudinger ligation with unnatural-amino-acid-containing RNAP subunits and σ, quantitation of labelling efficiency and labelling specificity, and reconstitution of RNAP.