In Memoriam

Renowned scientist and scholar lived to 101

Rutgers Creates Joachim Messing Endowed Chair in Molecular Genetics

The Rutgers University Board of Governors today approved the creation of the Joachim Messing Endowed Chair in Molecular Genetics.

Shared Genetics in Humans and Roundworms Shed Light on Infertility, Rutgers Study Finds

McKim Lab Postdoc featured in GSA blog

GSA's Spotlight features authors who make an impact while still in undergrad.

Dr. Gallavotti earns NSF award for latest research initiative

Dismukes research holds great promise for advancing Sustainable Energy

Search for low-cost platinum alternative leads to new technology

Located on Busch Campus of Rutgers, The State University of New Jersey, the Waksman Institute of Microbiology is an interdisciplinary research institute devoted to excellence in basic research. Focus areas include developmental biology, cell biology, biochemistry, structural biology, genetics, and genomics.

To support the educational mission of Rutgers, Waksman faculty members hold appointments in academic departments throughout the university. Our researchers train undergraduate students, graduate students, and post-doctoral fellows, as well as engage high school students in research through an outreach program.

Latest News

Rutgers Today Media Contact: Todd B. Bates

Ten Rutgers professors have been named fellows of the American Association for the Advancement of Science (AAAS), an honor conferred on 381 other experts in the U.S. and abroad.

The fellows were chosen by their AAAS peers for efforts to advance science applications that are deemed scientifically or socially distinguished, according to the AAAS.

By Deborah Walsh, Suburban Trends
Although some students might relish a respite from the most challenging of school work over the summer months, a couple of Kinnelon High School (KHS) students seized an opportunity to conduct high level scientific research at the Waksman Student Scholars Program (WSSP) Summer Institute at Rutgers University.
 

Madelaine Travaille, the school district's science supervisor, said a science research club was started at KHS in the 2015-16 school year.

Andrea Gallavotti, Assistant Professor in the Department of Plant Biology at the Waksman Institute, is a Co-PI of a recently awarded five-year collaborative grant. The project, sponsored by the National Science Foundation and titled “Genomic and Synthetic Approaches Linking Auxin Signaling Modules to Functional Domains in Maize”, seeks to understand how auxin signaling regulates the formation of specific functional domains in maize inflorescences (http://www.nsf.gov/awardsearch/showAward?AWD_ID=1546873).

Discovered in bacteria as viral defense mechanism, researchers program C2c2 to manipulate cellular RNA using CRISPR

Dr. Ruth Steward is a Principal Investigator at the Waksman Institute of Microbiology and a member of the Molecular Biology and Biochemistry Department at Rutgers University, New Jersey. Her research focuses on the role of the new Zfrp8 gene, identified in her lab, in hematopoiesis and oogenesis.

Recent Publications

Zhang, W, Messing J.  In Press.  PacBio RS for gene family studies. Methods in Molecular Biology. Haplotyping.
Wu, Y, Messing J.  In Press.  Understanding and improving protein traits in maize seeds. Achieving Sustainable Maize Cultivation.
Qian, X, Kim M K, Kumaraswamy KG, Agarwal A, Lun DS, Dismukes CG.  2016.  Flux balance analysis of photoautotrophic metabolism: Uncovering new biological details of subsystems involved in cyanobacterial photosynthesis. Biochimica et Biophysica Acta (BBA) - Bioenergetics. :-. AbstractWebsite
We have constructed and experimentally tested a comprehensive genome-scale model of photoautotrophic growth, denoted iSyp821, for the cyanobacterium Synechococcus sp. PCC 7002. iSyp821 incorporates a variable biomass objective function (vBOF), in which stoichiometries of the major biomass components vary according to light intensity. The vBOF was constrained to fit the measured cellular carbohydrate/protein content under different light intensities. iSyp821 provides rigorous agreement with experimentally measured cell growth rates and inorganic carbon uptake rates as a function of light intensity. iSyp821 predicts two observed metabolic transitions that occur as light intensity increases: 1) from PSI-cyclic to linear electron flow (greater redox energy), and 2) from carbon allocation as proteins (growth) to carbohydrates (energy storage) mode. iSyp821 predicts photoautotrophic carbon flux into 1) a hybrid gluconeogenesis-pentose phosphate (PP) pathway that produces glycogen by an alternative pathway than conventional gluconeogenesis, and 2) the photorespiration pathway to synthesize the essential amino acid, glycine. Quantitative fluxes through both pathways were verified experimentally by following the kinetics of formation of 13C metabolites from 13CO2 fixation. iSyp821 was modified to include changes in gene products (enzymes) from experimentally measured transcriptomic data and applied to estimate changes in concentrations of metabolites arising from nutrient stress. Using this strategy, we found that iSyp821 correctly predicts the observed redistribution pattern of carbon products under nitrogen depletion, including decreased rates of CO2 uptake, amino acid synthesis, and increased rates of glycogen and lipid synthesis.
Radford, SJ, Go A MM, McKim KS.  2016.  Cooperation Between Kinesin Motors Promotes Spindle Symmetry and Chromosome Organization in Oocytes.. Genetics. Abstract
The oocyte spindle in most animal species is assembled in the absence of the microtubule-organizing centers called centrosomes. Without the organization provided by centrosomes, acentrosomal meiotic spindle organization may rely heavily on the bundling of microtubules by kinesin motor proteins. Indeed, the minus-end directed kinesin-14 NCD and the plus-end directed kinesin-6 Subito are known to be required for oocyte spindle organization in Drosophila melanogaster How multiple microtubule-bundling kinesins interact to produce a functional acentrosomal spindle is not known. In addition, there have been few studies on the meiotic function of one of the most important microtubule-bundlers in mitotic cells, the kinesin-5 KLP61F. We have found that the kinesin-5 KLP61F is required for spindle and centromere symmetry in oocytes. The asymmetry observed in the absence of KLP61F depends on NCD, the kinesin-12 KLP54D, and the microcephaly protein ASP. In contrast, KLP61F and Subito work together in maintaining a bipolar spindle. We propose that the prominent central spindle, stabilized by Subito, provides the framework for the coordination of multiple microtubule-bundling activities. The activities of several proteins, including NCD, KLP54D, and ASP, generate asymmetries within the acentrosomal spindle, while KLP61F and Subito balance these forces resulting in the capacity to accurately segregate chromosomes.