Located on Busch Campus of Rutgers, The State University of New Jersey, the Waksman Institute of Microbiology is an interdisciplinary research institute devoted to excellence in basic research. Focus areas include developmental biology, cell biology, biochemistry, structural biology, genetics, and genomics.

To support the educational mission of Rutgers, Waksman faculty members hold appointments in academic departments throughout the university. Our researchers train undergraduate students, graduate students, and post-doctoral fellows, as well as engage high school students in research through an outreach program.

Recent Publications

Das, A, Shah SJ, Fan B, Paik D, DiSanto DJ, Hinman A M, Cesario JM, Battaglia RA, Demos N, McKim KS.  2015.  Spindle Assembly and Chromosome Segregation Requires Central Spindle Proteins in Drosophila Oocytes.. Genetics. AbstractWebsite
Oocytes segregate chromosomes in the absence of centrosomes. In this situation, the chromosomes direct spindle assembly. It is still unclear in this system, what factors are required for homologous chromosome bi-orientation and spindle assembly. The Drosophila kinesin-6 protein Subito, though non-essential for mitotic spindle assembly, is required to organize a bipolar meiotic spindle and chromosome bi-orientation in oocytes. Along with the chromosomal passenger complex (CPC), Subito is an important part of the metaphase I central spindle. In this study we have conducted genetic screens to identify genes that interact with subito or the CPC component Incenp. In addition, the meiotic mutant phenotype for some of the genes identified in these screens were characterized. We show, in part through the use of a heat shock inducible system, that the Centralspindlin component RacGAP50C and downstream regulators of cytokinesis Rho1, Sticky and RhoGEF2, are required for homologous chromosome bi-orientation in metaphase I oocytes. This suggests a novel function for proteins normally involved in mitotic cell division, in the regulation of microtubule-chromosome interactions. We also show that the kinetochore protein, Polo kinase, is required for maintaining chromosome alignment and spindle organization in metaphase I oocytes. In combination our results support a model where the meiotic central spindle and associated proteins are essential for acentrosomal chromosome segregation.
Akhurst, RJ, Padgett RW.  2015.  Matters of context guide future research in TGFβ superfamily signaling. Science Signaling. 8(399):DOI:10.1126/scisignal.aad0416.
Gardner, G, Al-Sharab J, Danilovic N, Go Y B, Ayers KE, Greenblatt M, Dismukes G C.  2015.  Structural Basis for Differing Electrocatalytic Water Oxidation by the Cubic, Layered and Spinel Forms of Lithium Cobalt Oxides. Energy Environ. Sci.. :-. AbstractWebsite
The two polymorphs of lithium cobalt oxide, LiCoO2, present an opportunity to contrast the structural requirements for reversible charge storage (battery function) vs catalysis of water oxidation/oxygen evolution (OER; 2H2O[rightward arrow]O2 + 4H+ + 4e- ). Previously, we reported high OER electrocatalytic activity from nanocrystals of the cubic phase vs. poor activity from the layered phase - the archetypal lithium-ion battery cathode. Here we apply transmission electron microscopy, electron diffraction, voltammetry and elemental analysis under OER electrolysis condition to show that labile Li+ ions (de)intercalate from layered LiCoO2, initiating structural reorganization to the cubic spinel LiCo2O4, in parallel with formation of an active catalytic phase. Comparison of cubic LiCoO2 (50nm) to iridium (5 nm) nanoparticles for OER catalysis (commercial benchmark) in basic and neutral electrolyte reveals excellent performance in terms of Tafel slope (48 mV dec-1), overpotential ([small eta] =  420 mV @ 10 mA cm-2 at pH = 14), Faradic yield (100%) and OER stability (no loss in 14 hours). The inherent OER activity of cubic LiCoO2 and spinel LiCo2O4 is attributable to their [Co4O4]n+ cubane structural units, which provides lower oxidation potential to Co4+ and lower inter-cubane hole mobility. By contrast, the layered phase which lacks cubanes exhibits extensive intra-planar hole delocalization which entropically disfavors the four electron/hole concerted OER reaction.