In Memoriam

Renowned scientist and scholar lived to 101

Rutgers Creates Joachim Messing Endowed Chair in Molecular Genetics

The Rutgers University Board of Governors today approved the creation of the Joachim Messing Endowed Chair in Molecular Genetics.

Shared Genetics in Humans and Roundworms Shed Light on Infertility, Rutgers Study Finds

McKim Lab Postdoc featured in GSA blog

GSA's Spotlight features authors who make an impact while still in undergrad.

Dr. Gallavotti earns NSF award for latest research initiative

Dismukes research holds great promise for advancing Sustainable Energy

Search for low-cost platinum alternative leads to new technology

Located on Busch Campus of Rutgers, The State University of New Jersey, the Waksman Institute of Microbiology is an interdisciplinary research institute devoted to excellence in basic research. Focus areas include developmental biology, cell biology, biochemistry, structural biology, genetics, and genomics.

To support the educational mission of Rutgers, Waksman faculty members hold appointments in academic departments throughout the university. Our researchers train undergraduate students, graduate students, and post-doctoral fellows, as well as engage high school students in research through an outreach program.

What's Happening

Latest News

Rutgers Today Media Contact: Todd B. Bates

Ten Rutgers professors have been named fellows of the American Association for the Advancement of Science (AAAS), an honor conferred on 381 other experts in the U.S. and abroad.

The fellows were chosen by their AAAS peers for efforts to advance science applications that are deemed scientifically or socially distinguished, according to the AAAS.

By Deborah Walsh, Suburban Trends
Although some students might relish a respite from the most challenging of school work over the summer months, a couple of Kinnelon High School (KHS) students seized an opportunity to conduct high level scientific research at the Waksman Student Scholars Program (WSSP) Summer Institute at Rutgers University.
 

Madelaine Travaille, the school district's science supervisor, said a science research club was started at KHS in the 2015-16 school year.

Andrea Gallavotti, Assistant Professor in the Department of Plant Biology at the Waksman Institute, is a Co-PI of a recently awarded five-year collaborative grant. The project, sponsored by the National Science Foundation and titled “Genomic and Synthetic Approaches Linking Auxin Signaling Modules to Functional Domains in Maize”, seeks to understand how auxin signaling regulates the formation of specific functional domains in maize inflorescences (http://www.nsf.gov/awardsearch/showAward?AWD_ID=1546873).

Discovered in bacteria as viral defense mechanism, researchers program C2c2 to manipulate cellular RNA using CRISPR

Dr. Ruth Steward is a Principal Investigator at the Waksman Institute of Microbiology and a member of the Molecular Biology and Biochemistry Department at Rutgers University, New Jersey. Her research focuses on the role of the new Zfrp8 gene, identified in her lab, in hematopoiesis and oogenesis.

Recent Publications

Zhang, W, Messing J.  In Press.  PacBio RS for gene family studies. Methods in Molecular Biology. Haplotyping.
Wu, Y, Messing J.  In Press.  Understanding and improving protein traits in maize seeds. Achieving Sustainable Maize Cultivation.
Radford, SJ, McKim KS.  2016.  Techniques for Imaging Prometaphase and Metaphase of Meiosis I in Fixed Drosophila Oocytes.. Journal of visualized experiments : JoVE. (116) Abstract
Chromosome segregation in human oocytes is error prone, resulting in aneuploidy, which is the leading genetic cause of miscarriage and birth defects. The study of chromosome behavior in oocytes from model organisms holds much promise to uncover the molecular basis of the susceptibility of human oocytes to aneuploidy. Drosophila melanogaster is amenable to genetic manipulation, with over 100 years of research, community, and technique development. Visualizing chromosome behavior and spindle assembly in Drosophila oocytes has particular challenges, however, due primarily to the presence of membranes surrounding the oocyte that are impenetrable to antibodies. We describe here protocols for the collection, preparation, and imaging of meiosis I spindle assembly and chromosome behavior in Drosophila oocytes, which allow the molecular dissection of chromosome segregation in this important model organism.
Irvine, KD, Heemskerk I, Ibar C, Shraiman BI, Irvine KD.  2016.  Differential growth triggers mechanical feedback that elevates Hippo signaling.. Proceedings of the National Academy of Sciences of the United States of America. Abstract
Mechanical stress can influence cell proliferation in vitro, but whether it makes a significant contribution to growth control in vivo, and how it is modulated and experienced by cells within developing tissues, has remained unclear. Here we report that differential growth reduces cytoskeletal tension along cell junctions within faster-growing cells. We propose a theoretical model to explain the observed reduction of tension within faster-growing clones, supporting it by computer simulations based on a generalized vertex model. This reduced tension modulates a biomechanical Hippo pathway, decreasing recruitment of Ajuba LIM protein and the Hippo pathway kinase Warts, and decreasing the activity of the growth-promoting transcription factor Yorkie. These observations provide a specific mechanism for a mechanical feedback that contributes to evenly distributed growth, and we show that genetically suppressing mechanical feedback alters patterns of cell proliferation in the developing Drosophila wing. By providing experimental support for the induction of mechanical stress by differential growth, and a molecular mechanism linking this stress to the regulation of growth in developing organs, our results confirm and extend the mechanical feedback hypothesis.