Publications

2016
Vvedenskaya, IO, Vahedian-Movahed H, Zhang Y, Taylor DM, Ebright RH, Nickels BE.  2016.  Interactions between RNA polymerase and the core recognition element are a determinant of transcription start site selection.. Proceedings of the National Academy of Sciences of the United States of America. 113:E2899-E2905. Abstract
During transcription initiation, RNA polymerase (RNAP) holoenzyme unwinds ∼13 bp of promoter DNA, forming an RNAP-promoter open complex (RPo) containing a single-stranded transcription bubble, and selects a template-strand nucleotide to serve as the transcription start site (TSS). In RPo, RNAP core enzyme makes sequence-specific protein-DNA interactions with the downstream part of the nontemplate strand of the transcription bubble ("core recognition element," CRE). Here, we investigated whether sequence-specific RNAP-CRE interactions affect TSS selection. To do this, we used two next-generation sequencing-based approaches to compare the TSS profile of WT RNAP to that of an RNAP derivative defective in sequence-specific RNAP-CRE interactions. First, using massively systematic transcript end readout, MASTER, we assessed effects of RNAP-CRE interactions on TSS selection in vitro and in vivo for a library of 4(7) (∼16,000) consensus promoters containing different TSS region sequences, and we observed that the TSS profile of the RNAP derivative defective in RNAP-CRE interactions differed from that of WT RNAP, in a manner that correlated with the presence of consensus CRE sequences in the TSS region. Second, using 5' merodiploid native-elongating-transcript sequencing, 5' mNET-seq, we assessed effects of RNAP-CRE interactions at natural promoters in Escherichia coli, and we identified 39 promoters at which RNAP-CRE interactions determine TSS selection. Our findings establish RNAP-CRE interactions are a functional determinant of TSS selection. We propose that RNAP-CRE interactions modulate the position of the downstream end of the transcription bubble in RPo, and thereby modulate TSS selection, which involves transcription bubble expansion or transcription bubble contraction (scrunching or antiscrunching).
Winkelman, JT, Vvedenskaya IO, Zhang Y, Zhang Y, Bird JG, Taylor DM, Gourse RL, Ebright RH, Nickels BE.  2016.  Multiplexed protein-DNA cross-linking: Scrunching in transcription start site selection.. Science (New York, N.Y.). 351(6277):1090-3. Abstract
In bacterial transcription initiation, RNA polymerase (RNAP) selects a transcription start site (TSS) at variable distances downstream of core promoter elements. Using next-generation sequencing and unnatural amino acid-mediated protein-DNA cross-linking, we have determined, for a library of 4(10) promoter sequences, the TSS, the RNAP leading-edge position, and the RNAP trailing-edge position. We find that a promoter element upstream of the TSS, the "discriminator," participates in TSS selection, and that, as the TSS changes, the RNAP leading-edge position changes, but the RNAP trailing-edge position does not change. Changes in the RNAP leading-edge position, but not the RNAP trailing-edge position, are a defining hallmark of the "DNA scrunching" that occurs concurrent with RNA synthesis in initial transcription. We propose that TSS selection involves DNA scrunching prior to RNA synthesis.
Feng, Y, Zhang Y, Ebright RH.  2016.  Structural basis of transcription activation.. Science (New York, N.Y.). 352(6291):1330-3. AbstractWebsite
Class II transcription activators function by binding to a DNA site overlapping a core promoter and stimulating isomerization of an initial RNA polymerase (RNAP)-promoter closed complex into a catalytically competent RNAP-promoter open complex. Here, we report a 4.4 angstrom crystal structure of an intact bacterial class II transcription activation complex. The structure comprises Thermus thermophilus transcription activator protein TTHB099 (TAP) [homolog of Escherichia coli catabolite activator protein (CAP)], T. thermophilus RNAP σ(A) holoenzyme, a class II TAP-dependent promoter, and a ribotetranucleotide primer. The structure reveals the interactions between RNAP holoenzyme and DNA responsible for transcription initiation and reveals the interactions between TAP and RNAP holoenzyme responsible for transcription activation. The structure indicates that TAP stimulates isomerization through simple, adhesive, stabilizing protein-protein interactions with RNAP holoenzyme.
Bird, JG, Zhang Y, Tian Y, Panova N, Barvík I, Greene L, Liu M, Buckley B, Krásný L, Lee JK et al..  2016.  The mechanism of RNA 5' capping with NAD(+), NADH and desphospho-CoA.. Nature. 525(7612):444-447. Abstract
The chemical nature of the 5' end of RNA is a key determinant of RNA stability, processing, localization and translation efficiency, and has been proposed to provide a layer of 'epitranscriptomic' gene regulation. Recently it has been shown that some bacterial RNA species carry a 5'-end structure reminiscent of the 5' 7-methylguanylate 'cap' in eukaryotic RNA. In particular, RNA species containing a 5'-end nicotinamide adenine dinucleotide (NAD(+)) or 3'-desphospho-coenzyme A (dpCoA) have been identified in both Gram-negative and Gram-positive bacteria. It has been proposed that NAD(+), reduced NAD(+) (NADH) and dpCoA caps are added to RNA after transcription initiation, in a manner analogous to the addition of 7-methylguanylate caps. Here we show instead that NAD(+), NADH and dpCoA are incorporated into RNA during transcription initiation, by serving as non-canonical initiating nucleotides (NCINs) for de novo transcription initiation by cellular RNA polymerase (RNAP). We further show that both bacterial RNAP and eukaryotic RNAP II incorporate NCIN caps, that promoter DNA sequences at and upstream of the transcription start site determine the efficiency of NCIN capping, that NCIN capping occurs in vivo, and that NCIN capping has functional consequences. We report crystal structures of transcription initiation complexes containing NCIN-capped RNA products. Our results define the mechanism and structural basis of NCIN capping, and suggest that NCIN-mediated 'ab initio capping' may occur in all organisms.
2015
Vvedenskaya, IO, Zhang Y, Goldman SR, Valenti A, Visone V, Taylor DM, Ebright RH, Nickels BE.  2015.  Massively Systematic Transcript End Readout, "MASTER": Transcription Start Site Selection, Transcriptional Slippage, and Transcript Yields.. Molecular cell. 60:953-965. Abstract
We report the development of a next-generation sequencing-based technology that entails construction of a DNA library comprising up to at least 4(7) (∼16,000) barcoded sequences, production of RNA transcripts, and analysis of transcript ends and transcript yields (massively systematic transcript end readout, "MASTER"). Using MASTER, we define full inventories of transcription start sites ("TSSomes") of Escherichia coli RNA polymerase for initiation at a consensus core promoter in vitro and in vivo; we define the TSS-region DNA sequence determinants for TSS selection, reiterative initiation ("slippage synthesis"), and transcript yield; and we define effects of DNA topology and NTP concentration. The results reveal that slippage synthesis occurs from the majority of TSS-region DNA sequences and that TSS-region DNA sequences have profound, up to 100-fold, effects on transcript yield. The results further reveal that TSSomes depend on DNA topology, consistent with the proposal that TSS selection involves transcription-bubble expansion ("scrunching") and transcription-bubble contraction ("anti-scrunching").
Hassan, HM, Degen D, Jang K H, Ebright RH, Fenical W.  2015.  Salinamide F, new depsipeptide antibiotic and inhibitor of bacterial RNA polymerase from a marine-derived Streptomyces sp.. The Journal of antibiotics. 68(3):206-9.
Feng, Y, Degen D, Wang X, Gigliotti M, Liu S, Zhang Y, Das D, Michalchuk T, Ebright YW, Talaue M et al..  2015.  Structural basis of transcription inhibition by CBR hydroxamidines and CBR pyrazoles. Structure. 23:1470-1481. AbstractWebsite
CBR hydroxamidines are small-molecule inhibitors of bacterial RNA polymerase (RNAP) discovered through high-throughput screening of synthetic-compound libraries. CBR pyrazoles are structurally related RNAP inhibitors discovered through scaffold hopping from CBR hydroxamidines. CBR hydroxamidines and pyrazoles selectively inhibit Gram-negative bacterial RNAP and exhibit selective antibacterial activity against Gram-negative bacteria. Here, we report crystal structures of the prototype CBR hydroxamidine, CBR703, and a CBR pyrazole in complex with E. coli RNAP holoenzyme. In addition, we define the full resistance determinant for CBR703, show that the binding site and resistance determinant for CBR703 do not overlap the binding sites and resistance determinants of other characterized RNAP inhibitors, show that CBR703 exhibits no or minimal cross-resistance with other characterized RNAP inhibitors, and show that co-administration of CBR703 with other RNAP inhibitors results in additive antibacterial activities. The results set the stage for structure-based optimization of CBR inhibitors as antibacterial drugs.
Chakraborty, A, Mazumder A, Lin M, Hasemeyer A, Xu Q, Wang D, Ebright YW, Ebright RH.  2015.  Site-specific incorporation of probes into RNA polymerase by unnatural-amino-acid mutagenesis and Staudinger-Bertozzi ligation.. Methods in molecular biology (Clifton, N.J.). 1276:101-31. Abstract
A three-step procedure comprising (1) unnatural-amino-acid mutagenesis with 4-azido-phenylalanine, (2) Staudinger-Bertozzi ligation with a probe-phosphine derivative, and (3) in vitro reconstitution of RNA polymerase (RNAP) enables the efficient site-specific incorporation of a fluorescent probe, a spin label, a cross-linking agent, a cleaving agent, an affinity tag, or any other biochemical or biophysical probe, at any site of interest in RNAP. Straightforward extensions of the procedure enable the efficient site-specific incorporation of two or more different probes in two or more different subunits of RNAP. We present protocols for synthesis of probe-phosphine derivatives, preparation of RNAP subunits and the transcription initiation factor σ, unnatural amino acid mutagenesis of RNAP subunits and σ, Staudinger ligation with unnatural-amino-acid-containing RNAP subunits and σ, quantitation of labelling efficiency and labelling specificity, and reconstitution of RNAP.
2014
Vvedenskaya, IO, Vahedian-Movahed H, Bird JG, Knoblauch JG, Goldman SR, Zhang Y, Ebright RH, Nickels BE.  2014.  Transcription. Interactions between RNA polymerase and the "core recognition element" counteract pausing.. Science (New York, N.Y.). 344(6189):1285-9. AbstractWebsite
Transcription elongation is interrupted by sequences that inhibit nucleotide addition and cause RNA polymerase (RNAP) to pause. Here, by use of native elongating transcript sequencing (NET-seq) and a variant of NET-seq that enables analysis of mutant RNAP derivatives in merodiploid cells (mNET-seq), we analyze transcriptional pausing genome-wide in vivo in Escherichia coli. We identify a consensus pause-inducing sequence element, G₋₁₀Y₋₁G(+1) (where -1 corresponds to the position of the RNA 3' end). We demonstrate that sequence-specific interactions between RNAP core enzyme and a core recognition element (CRE) that stabilize transcription initiation complexes also occur in transcription elongation complexes and facilitate pause read-through by stabilizing RNAP in a posttranslocated register. Our findings identify key sequence determinants of transcriptional pausing and establish that RNAP-CRE interactions modulate pausing.
Vorobiev, SM, Gensler Y, Vahedian-Movahed H, Seetharaman J, Su M, Huang JY, Xiao R, Kornhaber G, Montelione GT, Tong L et al..  2014.  Structure of the DNA-Binding and RNA-Polymerase-Binding Region of Transcription Antitermination Factor λQ.. Structure . 22:485-495. Abstract
The bacteriophage λ Q protein is a transcription antitermination factor that controls expression of the phage late genes as a stable component of the transcription elongation complex. To join the elongation complex, λQ binds a specific DNA sequence element and interacts with RNA polymerase that is paused during early elongation. λQ binds to the paused early-elongation complex through interactions between λQ and two regions of RNA polymerase: region 4 of the σ(70) subunit and the flap region of the β subunit. We present the 2.1 Å resolution crystal structure of a portion of λQ containing determinants for interaction with DNA, interaction with region 4 of σ(70), and interaction with the β flap. The structure provides a framework for interpreting prior genetic and biochemical analysis and sets the stage for future structural studies to elucidate the mechanism by which λQ alters the functional properties of the transcription elongation complex.
Tang, W, Liu S, Degen D, Ebright RH, Prusov EV.  2014.  Synthesis and Evaluation of Novel Analogues of Ripostatins.. Chemistry. 20:12310-9. AbstractWebsite
Ripostatins are polyene macrolactones isolated from the myxobacterium Sorangium cellulosum. They exhibit antibiotic activity by inhibiting bacterial RNA polymerase (RNAP) through a binding site and mechanism that are different from those of current antibacterial drugs. Thus, the ripostatins serve as starting points for the development of new anti-infective agents with a novel mode of action. In this work, several derivatives of ripostatins were produced. 15-Desoxyripostatin A was synthesized by using a one-pot carboalumination/cross-coupling. 5,6-Dihydroripostatin A was constructed by utilizing an intramolecular Suzuki cross-coupling macrolactonization approach. 14,14'-Difluororipostatin A and both epimeric 14,14'-difluororipostatins B were synthesized by using a Reformatsky type aldol addition of a haloketone, Stille cross-coupling, and ring-closing metathesis. The RNAP-inhibitory and antibacterial activities are presented. Structure-activity relationships indicate that the monocyclic keto-ol form of ripostatin A is the active form of ripostatin A, that the ripostatin C5-C6 unsaturation is important for activity, and that C14 geminal difluorination of ripostatin B results in no loss of activity.
Degen, D, Feng Y, Zhang Y, Ebright KY, Ebright YW, Gigliotti M, Vahedian-Movahed H, Mandal S, Talaue M, Connell N et al..  2014.  Transcription inhibition by the depsipeptide antibiotic salinamide A.. eLife. 3:e02451. Abstract
We report that bacterial RNA polymerase (RNAP) is the functional cellular target of the depsipeptide antibiotic salinamide A (Sal), and we report that Sal inhibits RNAP through a novel binding site and mechanism. We show that Sal inhibits RNA synthesis in cells and that mutations that confer Sal-resistance map to RNAP genes. We show that Sal interacts with the RNAP active-center 'bridge-helix cap,' comprising the 'bridge-helix N-terminal hinge,' 'F-loop,' and 'link region.' We show that Sal inhibits nucleotide addition in transcription initiation and elongation. We present a crystal structure that defines interactions between Sal and RNAP and effects of Sal on RNAP conformation. We propose that Sal functions by binding to the RNAP bridge-helix cap and preventing conformational changes of the bridge-helix N-terminal hinge necessary for nucleotide addition. The results provide a target for antibacterial drug discovery and a reagent to probe conformation and function of the bridge-helix N-terminal hinge.
Zhang, Y, Degen D, Ho MX, Sineva E, Ebright KY, Ebright YW, Mekler V, Vahedian-Movahed H, Feng Y, Yin R et al..  2014.  GE23077 binds to the RNA polymerase 'i' and 'i+1' sites and prevents the binding of initiating nucleotides.. eLife. 3:e02450. Abstract
Using a combination of genetic, biochemical, and structural approaches, we show that the cyclic-peptide antibiotic GE23077 (GE) binds directly to the bacterial RNA polymerase (RNAP) active-center 'i' and 'i+1' nucleotide binding sites, preventing the binding of initiating nucleotides, and thereby preventing transcription initiation. The target-based resistance spectrum for GE is unusually small, reflecting the fact that the GE binding site on RNAP includes residues of the RNAP active center that cannot be substituted without loss of RNAP activity. The GE binding site on RNAP is different from the rifamycin binding site. Accordingly, GE and rifamycins do not exhibit cross-resistance, and GE and a rifamycin can bind simultaneously to RNAP. The GE binding site on RNAP is immediately adjacent to the rifamycin binding site. Accordingly, covalent linkage of GE to a rifamycin provides a bipartite inhibitor having very high potency and very low susceptibility to target-based resistance. DOI: http://dx.doi.org/10.7554/eLife.02450.001.
2013
Robb, NC, Cordes T, Hwang L C, Gryte K, Duchi D, Craggs TD, Santoso Y, Weiss S, Ebright RH, Kapanidis AN.  2013.  The transcription bubble of the RNA polymerase-promoter open complex exhibits conformational heterogeneity and millisecond-scale dynamics: implications for transcription start-site selection.. Journal of molecular biology. 425:875-885. Abstract
Bacterial transcription is initiated after RNA polymerase (RNAP) binds to promoter DNA, melts ~14 base-pairs around the transcription start site, and forms a single-stranded "transcription bubble" within a catalytically active RNAP-DNA open complex (RP(o)). There is significant flexibility in the transcription start site, which causes variable spacing between the promoter elements and the start site; this in turn causes differences in the length and sequence at the 5' end of RNA transcripts, and can be important for gene regulation. The start-site variability also implies the presence of some flexibility in the positioning of the DNA relative to the RNAP active site in RP(o). The flexibility may occur in the positioning of the transcription bubble prior to RNA synthesis and may reflect bubble expansion ("scrunching") or bubble contraction ("unscrunching"). Here, we assess the presence of dynamic flexibility in RP(o) with single-molecule Förster Resonance Energy Transfer. We obtain experimental evidence for dynamic flexibility in RP(o) using different FRET rulers and labelling positions. An analysis of FRET distributions of RP(o) using burst variance analysis reveals conformational fluctuations in RP(o) in the millisecond timescale. Further experiments using subsets of nucleotides and DNA mutations allowed us to reprogram the transcription start sites, in a way that can be described by repositioning of the single-stranded transcription bubble relative to the RNAP active site within RP(o). Our study marks the first experimental observation of conformational dynamics in the transcription bubble of RP(o) and indicates that DNA dynamics within the bubble affect the search for transcription start sites.
2012
Zhang, Y, Feng Y, Chatterjee S, Tuske S, Ho MX, Arnold E, Ebright RH.  2012.  Structural Basis of Transcription Initiation.. Science (New York, N.Y.). 338(6110):1076-1080. AbstractWebsite
During transcription initiation, RNA polymerase (RNAP) binds and unwinds promoter DNA to form an RNAP-promoter open complex. We have determined crystal structures at 2.9 and 3.0 Å resolution of functional transcription initiation complexes comprising Thermus thermophilus RNA polymerase, σ(A), and a promoter DNA fragment corresponding to the transcription bubble and downstream dsDNA of the RNAP-promoter open complex. The structures show that σ recognizes the -10 element and discriminator element through interactions that include the unstacking and insertion into pockets of three DNA bases, and that RNAP recognizes the -4/+2 region through interactions that include the unstacking and insertion into a pocket of the +2 base. The structures further show that interactions between σ and template-strand ssDNA preorganize template-strand ssDNA to engage the RNAP active center.
Srivastava, A, Degen D, Ebright YW, Ebright RH.  2012.  Frequency, Spectrum, and Nonzero Fitness Costs of Resistance to Myxopyronin in Staphylococcus aureus.. Antimicrobial agents and chemotherapy. 56(12):6250-5. Abstract
The antibiotic myxopyronin (Myx) functions by inhibiting bacterial RNA polymerase (RNAP). The binding site on RNAP for Myx-the RNAP "switch region SW1/SW2 subregion"-is different from the binding site on RNAP for the RNAP inhibitor currently used in broad-spectrum antibacterial therapy, rifampin (Rif). Here, we report the frequency, spectrum, and fitness costs of Myx resistance in Staphylococcus aureus. The resistance rate for Myx is 4 × 10(-8) to 7 × 10(-8) per generation, which is equal within error to the resistance rate for Rif (3 × 10(-8) to 10 × 10(-8) per generation). Substitutions conferring Myx resistance were obtained in the RNAP β subunit [six substitutions: V1080(1275)I, V1080(1275)L, E1084(1279)K, D1101(1296)E, S1127(1322)L, and S1127(1322)P] and the RNAP β' subunit [five substitutions: K334(345)N, T925(917)K, T925(917)R, G1172(1354)C, and G1172(1354)D] (residues numbered as in Staphylococcus aureus RNAP and, in parentheses, as in Escherichia coli RNAP). Sites of substitutions conferring Myx resistance map to the RNAP switch region SW1/SW2 subregion and do not overlap the binding site on RNAP for Rif, and, correspondingly, Myx-resistant mutants exhibit no cross-resistance to Rif. All substitutions conferring Myx resistance exhibit significant fitness costs (4 to 15% per generation). In contrast, at least three substitutions conferring Rif resistance exhibit no fitness costs (≤0% per generation). The observation that all Myx-resistant mutants have significant fitness costs whereas at least three Rif-resistant mutants have no fitness costs, together with the previously established inverse correlation between fitness cost and clinical prevalence, suggests that Myx resistance is likely to have lower clinical prevalence than Rif resistance.
Chakraborty, A, Wang D, Ebright YW, Korlann Y, Kortkhonjia E, Kim T, Chowdhury S, Wigneshweraraj S, Irschik H, Jansen R et al..  2012.  Opening and closing of the bacterial RNA polymerase clamp.. Science (New York, N.Y.). 337(6094):591-5. AbstractWebsite
Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.
2011
Xiao, Y, Wei X, Ebright R, Wall D.  2011.  Antibiotic production by myxobacteria plays a role in predation.. Journal of bacteriology. 193(18):4626-33. Abstract
Myxobacteria are predatory and are prolific producers of secondary metabolites. Here, we tested a hypothesized role that secondary metabolite antibiotics function as weapons in predation. To test this, a Myxococcus xanthus Δta1 mutant, blocked in antibiotic TA (myxovirescin) production, was constructed. This TA(-) mutant was defective in producing a zone of inhibition (ZOI) against Escherichia coli. This shows that TA is the major M. xanthus-diffusible antibacterial agent against E. coli. Correspondingly, the TA(-) mutant was defective in E. coli killing. Separately, an engineered E. coli strain resistant to TA was shown to be resistant toward predation. Exogenous addition of spectinomycin, a bacteriostatic antibiotic, rescued the predation defect of the TA(-) mutant. In contrast, against Micrococcus luteus the TA(-) mutant exhibited no defect in ZOI or killing. Thus, TA plays a selective role on prey species. To extend these studies to other myxobacteria, the role of antibiotic corallopyronin production in predation was tested and also found to be required for Corallococcus coralloides killing on E. coli. Next, a role of TA production in myxobacterial fitness was assessed by measuring swarm expansion. Here, the TA(-) mutant had a specific swarm rate reduction on prey lawns, and thus reduced fitness, compared to an isogenic TA(+) strain. Based on these observations, we conclude that myxobacterial antibiotic production can function as a predatory weapon. To our knowledge, this is the first report to directly show a link between secondary metabolite production and predation.
Kuznedelov, K, Semenova E, Knappe TA, Mukhamedyarov D, Srivastava A, Chatterjee S, Ebright RH, Marahiel MA, Severinov K.  2011.  The Antibacterial Threaded-lasso Peptide Capistruin Inhibits Bacterial RNA Polymerase.. Journal of molecular biology. 412(5):842-8. Abstract
Capistruin, a ribosomally synthesized, post-translationally modified peptide produced by Burkholderia thailandensis E264, efficiently inhibits growth of Burkholderia and closely related Pseudomonas strains. The functional target of capistruin is not known. Capistruin is a threaded-lasso peptide (lariat peptide) consisting of an N-terminal ring of nine amino acids and a C-terminal tail of 10 amino acids threaded through the ring. The structure of capistruin is similar to that of microcin J25 (MccJ25), a threaded-lasso antibacterial peptide that is produced by some strains of Escherichia coli and targets DNA-dependent RNA polymerase (RNAP). Here, we show that capistruin, like MccJ25, inhibits wild type E. coli RNAP but not mutant, MccJ25-resistant, E. coli RNAP. We show further that an E. coli strain resistant to MccJ25, as a result of a mutation in an RNAP subunit gene, exhibits resistance to capistruin. The results indicate that the structural similarity of capistruin and MccJ25 reflects functional similarity and suggest that the functional target of capistruin, and possibly other threaded-lasso peptides, is bacterial RNAP.
Grohmann, D, Nagy J, Chakraborty A, Klose D, Fielden D, Ebright RH, Michaelis J, Werner F.  2011.  The initiation factor tfe and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation.. Molecular cell. 43(2):263-74. Abstract
TFIIE and the archaeal homolog TFE enhance DNA strand separation of eukaryotic RNAPII and the archaeal RNAP during transcription initiation by an unknown mechanism. We have developed a fluorescently labeled recombinant M. jannaschii RNAP system to probe the archaeal transcription initiation complex, consisting of promoter DNA, TBP, TFB, TFE, and RNAP. We have localized the position of the TFE winged helix (WH) and Zinc ribbon (ZR) domains on the RNAP using single-molecule FRET. The interaction sites of the TFE WH domain and the transcription elongation factor Spt4/5 overlap, and both factors compete for RNAP binding. Binding of Spt4/5 to RNAP represses promoter-directed transcription in the absence of TFE, which alleviates this effect by displacing Spt4/5 from RNAP. During elongation, Spt4/5 can displace TFE from the RNAP elongation complex and stimulate processivity. Our results identify the RNAP "clamp" region as a regulatory hot spot for both transcription initiation and transcription elongation.
Srivastava, A, Talaue M, Liu S, Degen D, Ebright RY, Sineva E, Chakraborty A, Druzhinin SY, Chatterjee S, Mukhopadhyay J et al..  2011.  New target for inhibition of bacterial RNA polymerase: 'switch region'. Current opinion in microbiology. 14:532-43. Abstract
A new drug target - the 'switch region' - has been identified within bacterial RNA polymerase (RNAP), the enzyme that mediates bacterial RNA synthesis. The new target serves as the binding site for compounds that inhibit bacterial RNA synthesis and kill bacteria. Since the new target is present in most bacterial species, compounds that bind to the new target are active against a broad spectrum of bacterial species. Since the new target is different from targets of other antibacterial agents, compounds that bind to the new target are not cross-resistant with other antibacterial agents. Four antibiotics that function through the new target have been identified: myxopyronin, corallopyronin, ripostatin, and lipiarmycin. This review summarizes the switch region, switch-region inhibitors, and implications for antibacterial drug discovery.
2010
Chakraborty, A, Wang D, Ebright YW, Ebright RH.  2010.  Azide-specific labeling of biomolecules by Staudinger-Bertozzi ligation phosphine derivatives of fluorescent probes suitable for single-molecule fluorescence spectroscopy.. Methods in enzymology. 472:19-30. Abstract
We describe the synthesis of phosphine derivatives of three fluorescent probes that have a brightness and photostability suitable for single-molecule fluorescence spectroscopy and microscopy: Alexa488, Cy3B, and Alexa647. In addition, we describe procedures for use of these reagents in azide-specific, bioorthogonal labeling through Staudinger-Bertozzi ligation, as well as procedures for the quantitation of labeling specificity and labeling efficiency. The reagents and procedures of this report enable chemoselective, site-selective labeling of azide-containing biomolecules for single-molecule fluorescence spectroscopy and microscopy.
2009
Hudson, BP, Quispe J, Lara-González S, Kim Y, Berman HM, Arnold E, Ebright RH, Lawson CL.  2009.  Three-dimensional EM structure of an intact activator-dependent transcription initiation complex.. Proceedings of the National Academy of Sciences of the United States of America. 106(47):19830-5. Abstract
We present the experimentally determined 3D structure of an intact activator-dependent transcription initiation complex comprising the Escherichia coli catabolite activator protein (CAP), RNA polymerase holoenzyme (RNAP), and a DNA fragment containing positions -78 to +20 of a Class I CAP-dependent promoter with a CAP site at position -61.5 and a premelted transcription bubble. A 20-A electron microscopy reconstruction was obtained by iterative projection-based matching of single particles visualized in carbon-sandwich negative stain and was fitted using atomic coordinate sets for CAP, RNAP, and DNA. The structure defines the organization of a Class I CAP-RNAP-promoter complex and supports previously proposed interactions of CAP with RNAP alpha subunit C-terminal domain (alphaCTD), interactions of alphaCTD with sigma(70) region 4, interactions of CAP and RNAP with promoter DNA, and phased-DNA-bend-dependent partial wrapping of DNA around the complex. The structure also reveals the positions and shapes of species-specific domains within the RNAP beta', beta, and sigma(70) subunits.
Goldman, SR, Ebright RH, Nickels BE.  2009.  Direct detection of abortive RNA transcripts in vivo.. Science (New York, N.Y.). 324(5929):927-8. Abstract
During transcription initiation in vitro, prokaryotic and eukaryotic RNA polymerase (RNAP) can engage in abortive initiation-the synthesis and release of short (2 to 15 nucleotides) RNA transcripts-before productive initiation. It has not been known whether abortive initiation occurs in vivo. Using hybridization with locked nucleic acid probes, we directly detected abortive transcripts in bacteria. In addition, we show that in vivo abortive initiation shows characteristics of in vitro abortive initiation: Abortive initiation increases upon stabilizing interactions between RNAP and either promoter DNA or sigma factor, and also upon deleting elongation factor GreA. Abortive transcripts may have functional roles in regulating gene expression in vivo.
Ho, MX, Hudson BP, Das K, Arnold E, Ebright RH.  2009.  Structures of RNA polymerase-antibiotic complexes.. Current opinion in structural biology. 19(6):715-23. Abstract
Inhibition of bacterial RNA polymerase (RNAP) is an established strategy for antituberculosis therapy and broad-spectrum antibacterial therapy. Crystal structures of RNAP-inhibitor complexes are available for four classes of antibiotics: rifamycins, sorangicin, streptolydigin, and myxopyronin. The structures define three different targets, and three different mechanisms, for inhibition of bacterial RNAP: (1) rifamycins and sorangicin bind near the RNAP active center and block extension of RNA products; (2) streptolydigin interacts with a target that overlaps the RNAP active center and inhibits conformational cycling of the RNAP active center; and (3) myxopyronin interacts with a target remote from the RNAP active center and functions by interfering with opening of the RNAP active-center cleft to permit entry and unwinding of DNA and/or by interfering with interactions between RNAP and the DNA template strand. The structures enable construction of homology models of pathogen RNAP-antibiotic complexes, enable in silico screening for new antibacterial agents, and enable rational design of improved antibacterial agents.