Areas of Research

More than a few Model organisms at work: Maize, Drosophila, C. Elegans, Mice, Tabacco, Yeast, E.coli, Algae and more.

SpirodelaBase

Methods and Tools to aid researchers.

In the News: High School Student Makes Duckweed Discovery

Old Bridge Student Finds Unknown Gene in Duckweed During a Student Scholar Program at Rutgers University

Located on Busch Campus of Rutgers, The State University of New Jersey, the Waksman Institute of Microbiology is an interdisciplinary research institute devoted to excellence in basic research. Focus areas include developmental biology, cell biology, biochemistry, structural biology, genetics, and genomics.

To support the educational mission of Rutgers, Waksman faculty members hold appointments in academic departments throughout the university. Our researchers train undergraduate students, graduate students, and post-doctoral fellows, as well as engage high school students in research through an outreach program.

Recent Publications

Wang, W, Haberer G, Gundlach H, Gläßer C, Nussbaumer T, Luo MC, Lomsadze A, Borodovsky M, Kerstetter RA, Shanklin J et al..  2014.  The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. 5 AbstractWebsite
The subfamily of the Lemnoideae belongs to a different order than other monocotyledonous species that have been sequenced and comprises aquatic plants that grow rapidly on the water surface. Here we select Spirodela polyrhiza for whole-genome sequencing. We show that Spirodela has a genome with no signs of recent retrotranspositions but signatures of two ancient whole-genome duplications, possibly 95 million years ago (mya), older than those in Arabidopsis and rice. Its genome has only 19,623 predicted protein-coding genes, which is 28% less than the dicotyledonous Arabidopsis thaliana and 50% less than monocotyledonous rice. We propose that at least in part, the neotenous reduction of these aquatic plants is based on readjusted copy numbers of promoters and repressors of the juvenile-to-adult transition. The Spirodela genome, along with its unique biology and physiology, will stimulate new insights into environmental adaptation, ecology, evolution and plant development, and will be instrumental for future bioenergy applications.
Wang, W, Wu Y, Messing J.  2014.  RNA-Seq transcriptome analysis of Spirodela dormancy without reproduction. BMC Genomics. 15(60) Abstract
Higher plants exhibit a remarkable phenotypic plasticity to adapt to adverse environmental changes. The Greater Duckweed Spirodela, as an aquatic plant, presents exceptional tolerance to cold winters through its dormant structure of turions in place of seeds. Abundant starch in turions permits them to sink and escape the freezing surface of waters. Due to their clonal propagation, they are the fastest growing biomass on earth, providing yet an untapped source for industrial applications.
Vorobiev, SM, Gensler Y, Vahedian-Movahed H, Seetharaman J, Su M, Huang JY, Xiao R, Kornhaber G, Montelione GT, Tong L et al..  2014.  Structure of the DNA-Binding and RNA-Polymerase-Binding Region of Transcription Antitermination Factor λQ.. Structure . 22:485-495. Abstract
The bacteriophage λ Q protein is a transcription antitermination factor that controls expression of the phage late genes as a stable component of the transcription elongation complex. To join the elongation complex, λQ binds a specific DNA sequence element and interacts with RNA polymerase that is paused during early elongation. λQ binds to the paused early-elongation complex through interactions between λQ and two regions of RNA polymerase: region 4 of the σ(70) subunit and the flap region of the β subunit. We present the 2.1 Å resolution crystal structure of a portion of λQ containing determinants for interaction with DNA, interaction with region 4 of σ(70), and interaction with the β flap. The structure provides a framework for interpreting prior genetic and biochemical analysis and sets the stage for future structural studies to elucidate the mechanism by which λQ alters the functional properties of the transcription elongation complex.