Publications

2011
Gelfand, B, Mead J, Bruning A, Apostolopoulos N, Tadigotla V, Nagaraj V, Sengupta AM, Vershon AK.  2011.  Regulated Antisense Transcription Controls Expression of Cell-type-specific Genes in Yeast. Mol Cell Biol. 31:1701-1709. Abstract
Transcriptome profiling studies have recently uncovered a large number of noncoding RNA transcripts (ncRNAs) in eukaryotic organisms, and there is growing interest in their role in the cell. For example, in haploid Saccharomyces cerevisiae cells, the expression of an overlapping antisense ncRNA, referred to here as RME2 (Regulator of Meiosis 2), prevents IME4 expression. In diploid cells, the a1-α2 complex represses the transcription of RME2, allowing IME4 to be induced during meiosis. In this study we show that antisense transcription across the IME4 promoter region does not block transcription factors from binding and is not required for repression. Mutational analyses found that sequences within the IME4 open reading frame (ORF) are required for the repression mediated by RME2 transcription. These results support a model where transcription of RME2 blocks the elongation of the full-length IME4 transcript but not its initiation. We have found that another antisense transcript, called RME3, represses ZIP2 in a cell-type-specific manner. These results suggest that regulated antisense transcription may be a widespread mechanism for the control of gene expression and may account for the roles of some of the previously uncharacterized ncRNAs in yeast.
2007
Mead, J, McCord R, Youngster L, Sharma M, Gartenberg MR, Vershon AK.  2007.  Swapping the Gene-specific and Regional Silencing Specificities of the Hst1 and Sir2 Histone Deacetylases. Mol Cell Biol. 27:2466-2475. Abstract
Sir2 and Hst1 are NAD(+)-dependent histone deacetylases of budding yeast that are related by strong sequence similarity. Nevertheless, the two proteins promote two mechanistically distinct forms of gene repression. Hst1 interacts with Rfm1 and Sum1 to repress the transcription of specific middle-sporulation genes. Sir2 interacts with Sir3 and Sir4 to silence genes contained within the silent-mating-type loci and telomere chromosomal regions. To identify the determinants of gene-specific versus regional repression, we created a series of Hst1::Sir2 hybrids. Our analysis yielded two dual-specificity chimeras that were able to perform both regional and gene-specific repression. Regional silencing by the chimeras required Sir3 and Sir4, whereas gene-specific repression required Rfm1 and Sum1. Our findings demonstrate that the nonconserved N-terminal region and two amino acids within the enzymatic core domain account for cofactor specificity and proper targeting of these proteins. These results suggest that the differences in the silencing and repression functions of Sir2 and Hst1 may not be due to differences in enzymatic activities of the proteins but rather may be the result of distinct cofactor specificities.
2005
Abraham, DS, Vershon AK.  2005.  N-terminal arm of Mcm1 is Required for Transcription of a Subset of Genes Involved in Maintenance of the cell wall. Eukaryot Cell. 4:1808-1819. Abstract
The yeast Mcm1 protein is a member of the MADS box family of transcription factors that interacts with several cofactors to differentially regulate genes involved in cell-type determination, mating, cell cycle control and arginine metabolism. Residues 18 to 96 of the protein, which form the core DNA-binding domain of Mcm1, are sufficient to carry out many Mcm1-dependent functions. However, deletion of residues 2 to 17, which form the nonessential N-terminal (NT) arm, confers a salt-sensitive phenotype, suggesting that the NT arm is required for the activation of salt response genes. We used a strategy that combined information from the mutational analysis of the Mcm1-binding site with microarray expression data under salt stress conditions to identify a new subset of Mcm1-regulated genes. Northern blot analysis showed that the transcript levels of several genes encoding associated with the cell wall, especially YGP1, decrease significantly upon deletion of the Mcm1 NT arm. Deletion of the Mcm1 NT arm results in a calcofluor white-sensitive phenotype, which is often associated with defects in transcription of cell wall genes. In addition, the deletion makes cells sensitive to CaCl2 and alkaline pH. We found that the defect caused by removal of the NT arm is not due to changes in Mcm1 protein level, stability, DNA-binding affinity, or DNA bending. This suggests that residues 2 to 17 of Mcm1 may be involved in recruiting a cofactor to the promoters of these genes to activate transcription.
2004
Carr, EA, Mead J, Vershon AK.  2004.  Alpha1-induced DNa Bending is Required for Transcriptional Activation by the Mcm1-alpha1 Complex. Nucleic Acids Res. 32:2298-2305. Abstract
The yeast Mcm1 protein is a founding member of the MADS-box family of transcription factors that is involved in the regulation of diverse sets of genes through interactions with distinct cofactor proteins. Mcm1 interacts with the Matalpha1 protein to activate the expression of the alpha-cell type-specific genes. To understand the requirement of the cofactor alpha1 for Mcm1-alpha1-dependent transcriptional activation we analyzed the recruitment of Mcm1 to the promoters of alpha-specific genes in vivo and found that Mcm1 is able to bind to the promoters of alpha-specific genes in the absence of alpha1. This suggests the function of alpha1 is more complex than simply recruiting Mcm1. Several MADS-box transcription factors, including Mcm1, induce DNA bending and there is evidence the proper bend may be required for transcriptional activation. We analyzed Mcm1-dependent bending of a Mcm1-alpha1 binding site in the presence and absence of alpha1 and found that Mcm1 alone shows a reduced DNA-bend at this site compared with other Mcm1 binding sites. However, the addition of alpha1 markedly increases the DNA-bend and we present evidence this bend is required for full transcriptional activation. These results support a model in which proper DNA-bending by the Mcm1-alpha1 complex is required for transcriptional activation.
Hanlon, SE, Xu Z, Norris DN, Vershon AK.  2004.  Analysis of the Meiotic role of the Mitochondrial Ribosomal Proteins Mrps17 and Mrpl37 in Saccharomyces Cerevisiae. Yeast. 21:1241-1252. Abstract
Sporulation in the yeast Saccharomyces cerevisiae is a complex and tightly regulated pathway that involves the induction of a large number of genes. We have identified MRPS17 in a cDNA library enriched for sporulation-specific genes. Homology searches show that the first one-third of Mrps17 has strong sequence similarity to bacterial S17 proteins, suggesting that Mrps17 is a potential mitochondrial ribosomal protein. This is further supported by the fact that mrps17Delta cells are respiratory-deficient and that a Mrps17-GFP fusion localizes to the mitochondria. We have confirmed by Northern blot analysis that both MRPS17 and MRPL37 are strongly induced during the middle stages of sporulation and that this induction is dependent on the presence of a middle sporulation element (MSE) in the promoters of these genes. Interestingly, we found that Mrps17 and Mrpl37, but not other mitochondrial ribosomal proteins, accumulate during the middle stages of sporulation. These results suggest that Mrps17 and Mrpl37 may have additional meiosis-specific roles.
Fingerman, IM, Sutphen K, Montano SP, Georgiadis MM, Vershon AK.  2004.  Characterization of Critical Interactions Between Ndt80 and MSe DNa Defining a Novel Family of Ig-fold Transcription Factors. Nucleic Acids Res. 32:2947-2956. Abstract
The Ndt80 protein of the yeast Saccharomyces cerevisiae is the founding member of a new sub-family of proteins in the Ig-fold superfamily of transcription factors. The crystal structure of Ndt80 bound to DNA shows that it makes contacts through several loops on one side of the protein that connect beta-strands which form the beta-sandwich fold common to proteins in this superfamily. However, the DNA-binding domain of Ndt80 is considerably larger than many other members of the Ig-fold superfamily and it appears to make a larger number of contacts with the DNA than these proteins. To determine the contribution of each of these contacts and to examine if the mechanism of Ndt80 DNA binding was similar to other members of the Ig-fold superfamily, amino acid substitutions were introduced at each residue that contacts the DNA and assayed for their effect on Ndt80 activity. Many of the mutations caused significant decreases in DNA-binding affinity and transcriptional activation. Several of these are in residues that are not found in other sub-families of Ig-fold proteins. These additional contacts are likely responsible for Ndt80's ability to bind DNA as a monomer while most other members require additional domains or cofactors to recognize their sites.
Nagaraj, VH, O'Flanagan RA, Bruning AR, Mathias JR, Vershon AK, Sengupta AM.  2004.  Combined Analysis of Expression data and Transcription Factor Binding Sites in the Yeast Genome. BMC Genomics. 5:59-59. Abstract
The analysis of gene expression using DNA microarrays provides genome wide profiles of the genes controlled by the presence or absence of a specific transcription factor. However, the question arises of whether a change in the level of transcription of a specific gene is caused by the transcription factor acting directly at the promoter of the gene or through regulation of other transcription factors working at the promoter.
Mathias, JR, Hanlon SE, O'Flanagan RA, Sengupta AM, Vershon AK.  2004.  Repression of the Yeast Ho gene by the MATalpha2 and MATa1 Homeodomain Proteins. Nucleic Acids Res. 32:6469-6478. Abstract
The HO gene in Saccharomyces cerevisiae is regulated by a large and complex promoter that is similar to promoters in higher order eukaryotes. Within this promoter are 10 potential binding sites for the a1-alpha2 heterodimer, which represses HO and other haploid-specific genes in diploid yeast cells. We have determined that a1-alpha2 binds to these sites with differing affinity, and that while certain strong-affinity sites are crucial for repression of HO, some of the weak-affinity sites are dispensable. However, these weak-affinity a1-alpha2-binding sites are strongly conserved in related yeast species and have a role in maintaining repression upon the loss of strong-affinity sites. We found that these weak sites are sufficient for a1-alpha2 to partially repress HO and recruit the Tup1-Cyc8 (Tup1-Ssn6) co-repressor complex to the HO promoter. We demonstrate that the Swi5 activator protein is not bound to URS1 in diploid cells, suggesting that recruitment of the Tup1-Cyc8 complex by a1-alpha2 prevents DNA binding by activator proteins resulting in repression of HO.
2003
Hanlon, SE, Norris DN, Vershon AK.  2003.  Depletion of H2A-H2b Dimers in Saccharomyces Cerevisiae Triggers Meiotic Arrest by Reducing IME1 Expression and Activating the BUB2-dependent Branch of the Spindle Checkpoint. Genetics. 164:1333-1344. Abstract
In the yeast Saccharomyces cerevisiae, diploid strains carrying homozygous hta1-htb1Delta mutations express histone H2A-H2B dimers at a lower level than do wild-type cells. Although this mutation has only minor effects on mitotic growth, it causes an arrest in sporulation prior to the first meiotic division. In this report, we show that the hta1-htb1Delta mutant exhibits reduced expression of early and middle-sporulation-specific genes and that the meiotic arrest of the hta1-htb1Delta mutant can be partially bypassed by overexpression of IME1. Additionally, deletions of BUB2 or BFA1, components of one branch of the spindle checkpoint pathway, bypass the meiotic arrest. Mutations in the other branch of the pathway or in the pachytene checkpoint are unable to suppress the meiotic block. These observations indicate that depletion of the H2A-H2B dimer blocks sporulation by at least two mechanisms: disruption of the expression of meiotic regulatory genes and activation of the spindle checkpoint. Our results show that the failure to progress through the meiotic pathway is not the result of global chromosomal alterations but that specific aspects of meiosis are sensitive to depletion of the H2A-H2B dimer.
McCord, R, Pierce M, Xie J, Wonkatal S, Mickel C, Vershon AK.  2003.  Rfm1, a Novel Tethering Factor Required to Recruit the Hst1 Histone Deacetylase for Repression of Middle Sporulation Genes. Mol Cell Biol. 23:2009-2016. Abstract
Transcriptional repression is often correlated with the alteration of chromatin structure through modifications of the nucleosomes in the promoter region, such as by deacetylation of the N-terminal histone tails. This is presumed to make the promoter region inaccessible to other regulatory factors and the general transcription machinery. To accomplish this, histone deacetylases are recruited to specific promoters via DNA-binding proteins and tethering factors. We have previously reported the requirement for the NAD(+)-dependent histone deacetylase Hst1 and the DNA-binding protein Sum1 for vegetative repression of many middle sporulation genes in Saccharomyces cerevisiae. Here we report the identification of a novel tethering factor, Rfm1, that is required for Hst1-mediated repression. Rfm1 interacts with both Sum1 and Hst1 and is required for the Sum1-Hst1 interaction. DNA microarray and Northern blot analyses showed that Rfm1 is required for repression of the same subset of Sum1-repressed genes that require Hst1. These results suggest that Rfm1 is a specificity factor that targets the Hst1 deacetylase to a subset of Sum1-regulated genes.
Fingerman, I, Nagaraj V, Norris D, Vershon AK.  2003.  Sfp1 Plays a key role in Yeast Ribosome Biogenesis. Eukaryot Cell. 2:1061-1068. Abstract
Sfp1, an unusual zinc finger protein, was previously identified as a gene that, when overexpressed, imparted a nuclear localization defect. sfp1 cells have a reduced size and a slow growth phenotype. In this study we show that SFP1 plays a role in ribosome biogenesis. An sfp1 strain is hypersensitive to drugs that inhibit translational machinery. sfp1 strains also have defects in global translation as well as defects in rRNA processing and 60S ribosomal subunit export. Microarray analysis has previously shown that ectopically expressed SFP1 induces the transcription of a large subset of genes involved in ribosome biogenesis. Many of these induced genes contain conserved promoter elements (RRPE and PAC). Our results show that activation of transcription from a reporter construct containing two RRPE sites flanking a single PAC element is SFP1 dependent. However, we have been unable to detect direct binding of the protein to these elements. This suggests that regulation of genes containing RRPEs is dependent upon Sfp1 but that Sfp1 may not directly bind to these conserved promoter elements; rather, activation may occur through an indirect mechanism.
Pierce, M, Benjamin KR, Montano SP, Georgiadis MM, Winter E, Vershon AK.  2003.  Sum1 and Ndt80 Proteins Compete for Binding to Middle Sporulation Element Sequences that Control Meiotic gene Expression. Mol Cell Biol. 23:4814-4825. Abstract
A key transition in meiosis is the exit from prophase and entry into the nuclear divisions, which in the yeast Saccharomyces cerevisiae depends upon induction of the middle sporulation genes. Ndt80 is the primary transcriptional activator of the middle sporulation genes and binds to a DNA sequence element termed the middle sporulation element (MSE). Sum1 is a transcriptional repressor that binds to MSEs and represses middle sporulation genes during mitosis and early sporulation. We demonstrate that Sum1 and Ndt80 have overlapping yet distinct sequence requirements for binding to and acting at variant MSEs. Whole-genome expression analysis identified a subset of middle sporulation genes that was derepressed in a sum1 mutant. A comparison of the MSEs in the Sum1-repressible promoters and MSEs from other middle sporulation genes revealed that there are distinct classes of MSEs. We show that Sum1 and Ndt80 compete for binding to MSEs and that small changes in the sequence of an MSE can yield large differences in which protein is bound. Our results provide a mechanism for differentially regulating the expression of middle sporulation genes through the competition between the Sum1 repressor and the Ndt80 activator.
2002
Montano, SP, Cot'e ML, Fingerman I, Pierce M, Vershon AK, Georgiadis MM.  2002.  Crystal Structure of the DNA-binding Domain from Ndt80, a Transcriptional Activator Required for Meiosis in Yeast. Proc Natl Acad Sci U S A. 99:14041-14046. Abstract
Ndt80 is a transcriptional activator required for meiosis in the yeast Saccharomyces cerevisiae. Here, we report the crystal structure at 2.3 A resolution of the DNA-binding domain of Ndt80 experimentally phased by using the anomalous and isomorphous signal from a single ordered Se atom per molecule of 272-aa residues. The structure reveals a single approximately 32-kDa domain with a distinct fold comprising a beta-sandwich core elaborated with seven additional beta-sheets and three short alpha-helices. Inspired by the structure, we have performed a mutational analysis and defined a DNA-binding motif in this domain. The DNA-binding domain of Ndt80 is homologous to a number of proteins from higher eukaryotes, and the residues that we have shown are required for DNA binding by Ndt80 are highly conserved among this group of proteins. These results suggest that Ndt80 is the defining member of a previously uncharacterized family of transcription factors, including the human protein (C11orf9), which has been shown to be highly expressed in invasive or metastatic tumor cells.
Montano, SP, Pierce M, Cot'e ML, Vershon AK, Georgiadis MM.  2002.  Crystallographic Studies of a Novel DNA-binding Domain from the Yeast Transcriptional Activator Ndt80. Acta Crystallogr D Biol Crystallogr. 58:2127-2130. Abstract
The Ndt80 protein is a transcriptional activator that plays a key role in the progression of the meiotic divisions in the yeast Saccharomyces cerevisiae. Ndt80 is strongly induced during the middle stages of the sporulation pathway and binds specifically to a promoter element called the MSE to activate transcription of genes required for the meiotic divisions. Here, the preliminary structural and functional studies to characterize the DNA-binding activity of this protein are reported. Through deletion analysis and limited proteolysis studies of Ndt80, a novel 32 kDa DNA-binding domain that is sufficient for DNA-binding in vitro has been defined. Crystals of the DNA-binding domain of Ndt80 in two distinct lattices have been obtained, for which diffraction data extend to 2.3 A resolution.
Hart, B, Mathias JR, Ott D, McNaughton L, Anderson JS, Vershon AK, Baxter SM.  2002.  Engineered Improvements in DNA-binding Function of the MATa1 Homeodomain Reveal Structural Changes Involved in Combinatorial Control. J Mol Biol. 316:247-256. Abstract
We have engineered enhanced DNA-binding function into the a1 homeodomain by making changes in a loop distant from the DNA-binding surface. Comparison of the free and bound a1 structures suggested a mechanism linking van der Waals stacking changes in this loop to the ordering of a final turn in the DNA-binding helix of a1. Inspection of the protein sequence revealed striking differences in amino acid identity at positions 24 and 25 compared to related homeodomain proteins. These positions lie in the loop connecting helix-1 and helix-2, which is involved in heterodimerization with the alpha 2 protein. A series of single and double amino acid substitutions (a1-Q24R, a1-S25Y, a1-S25F and a1-Q24R/S25Y) were engineered, expressed and purified for biochemical and biophysical study. Calorimetric measurements and HSQC NMR spectra confirm that the engineered variants are folded and are equally or more stable than the wild-type a1 homeodomain. NMR analysis of a1-Q24R/S25Y demonstrates that the DNA recognition helix (helix-3) is extended by at least one turn as a result of the changes in the loop connecting helix-1 and helix-2. As shown by EMSA, the engineered variants bind DNA with enhanced affinity (16-fold) in the absence of the alpha 2 cofactor and the variant alpha 2/a1 heterodimers bind cognate DNA with specificity and affinity reflective of the enhanced a1 binding affinity. Importantly, in vivo assays demonstrate that the a1-Q24R/S25Y protein binds with fivefold greater affinity than wild-type a1 and is able to partially suppress defects in repression by alpha 2 mutants. As a result of these studies, we show how subtle differences in residues at a surface distant from the functional site code for a conformational switch that allows the a1 homeodomain to become active in DNA binding in association with its cofactor alpha 2.
Mead, J, Bruning AR, Gill MK, Steiner AM, Acton TB, Vershon AK.  2002.  Interactions of the Mcm1 MADs box Protein with Cofactors that Regulate Mating in Yeast. Mol Cell Biol. 22:4607-4621. Abstract
The yeast Mcm1 protein is a member of the MADS box family of transcriptional regulatory factors, a class of DNA-binding proteins that control numerous cellular and developmental processes in yeast, Drosophila melanogaster, plants, and mammals. Although these proteins bind DNA on their own, they often combine with different cofactors to bind with increased affinity and specificity to their target sites. To understand how this class of proteins functions, we have made a series of alanine substitutions in the MADS box domain of Mcm1 and examined the effects of these mutations in combination with its cofactors that regulate mating in yeast. Our results indicate which residues of Mcm1 are essential for viability and transcriptional regulation with its cofactors in vivo. Most of the mutations in Mcm1 that are lethal affect DNA-binding affinity. Interestingly, the lethality of many of these mutations can be suppressed if the MCM1 gene is expressed from a high-copy-number plasmid. Although many of the alanine substitutions affect the ability of Mcm1 to activate transcription alone or in combination with the alpha 1 and Ste12 cofactors, most mutations have little or no effect on Mcm1-mediated repression in combination with the alpha 2 cofactor. Even nonconservative amino acid substitutions of residues in Mcm1 that directly contact alpha 2 do not significantly affect repression. These results suggest that within the same region of the Mcm1 MADS box domain, there are different requirements for interaction with alpha 2 than for interaction with either alpha1 or Ste12. Our results suggest how a small domain, the MADS box, interacts with multiple cofactors to achieve specificity in transcriptional regulation and how subtle differences in the sequences of different MADS box proteins can influence the interactions with specific cofactors while not affecting the interactions with common cofactors.
Ke, A, Mathias JR, Vershon AK, Wolberger C.  2002.  Structural and Thermodynamic Characterization of the DNa Binding Properties of a Triple Alanine Mutant of MATalpha2. Structure. 10:961-971. Abstract
Triply mutated MATalpha2 protein, alpha2-3A, in which all three major groove-contacting residues are mutated to alanine, is defective in binding DNA alone or in complex with Mcm1 yet binds with MATa1 with near wild-type affinity and specificity. To gain insight into this unexpected behavior, we determined the crystal structure of the a1/alpha2-3A/DNA complex. The structure shows that the triple mutation causes a collapse of the alpha2-3A/DNA interface that results in a reorganized set of alpha2-3A/DNA contacts, thereby enabling the mutant protein to recognize the wild-type DNA sequence. Isothermal titration calorimetry measurements reveal that a much more favorable entropic component stabilizes the a1/alpha2-3A/DNA complex than the alpha2-3A/DNA complex. The combined structural and thermodynamic studies provide an explanation of how partner proteins influence the sequence specificity of a DNA binding protein.
Jamai, A, Dubois E, Vershon AK, Messenguy F.  2002.  Swapping Functional Specificity of a MADs box Protein: Residues Required for Arg80 Regulation of Arginine Metabolism. Mol Cell Biol. 22:5741-5752. Abstract
Arg80 and Mcm1, two members of the MADS box family of DNA-binding proteins, regulate the metabolism of arginine in association with Arg81, the arginine sensor. In spite of the high degree of sequence conservation between the MADS box domains of the Arg80 and Mcm1 proteins (56 of 81 amino acids), these domains are not interchangeable. To determine which amino acids define the specificity of Arg80, we swapped the amino acids in each secondary-structure element of the Arg80 MADS box domain with the corresponding amino acids of Mcm1 and assayed the ability of these chimeras to regulate arginine-metabolic genes in place of the wild-type Arg80. Also performed was the converse experiment in which each variant residue in the Mcm1 MADS box domain was swapped with the corresponding residue of Arg80 in the context of an Arg80-Mcm1 fusion protein. We show that multiple regions of Arg80 are important for its function. Interestingly, the residues which have important roles in determining the specificity of Arg80 are not those which could contact the DNA but are residues that are likely to be involved in protein interactions. Many of these residues are clustered on one side of the protein, which could serve as an interface for interaction with Arg81 or Mcm1. This interface is distinct from the region used by the Mcm1 and human serum response factor MADS box proteins to interact with their cofactors. It is possible that this alternative interface is used by other MADS box proteins to interact with their cofactors.
2001
Mathias, JR, Zhong H, Jin Y, Vershon AK.  2001.  Altering the DNA-binding Specificity of the Yeast Matalpha 2 Homeodomain Protein. J Biol Chem. 276:32696-32703. Abstract
Homeodomain proteins are a highly conserved class of DNA-binding proteins that are found in virtually every eukaryotic organism. The conserved mechanism that these proteins use to bind DNA suggests that there may be at least a partial DNA recognition code for this class of proteins. To test this idea, we have investigated the sequence-specific requirements for DNA binding and repression by the yeast alpha2 homeodomain protein in association with its cofactors, Mcm1 and Mata1. We have determined the contribution for each residue in the alpha2 homeodomain that contacts the DNA in the co-crystal structures of the protein. We have also engineered mutants in the alpha2 homeodomain to alter the DNA-binding specificity of the protein. Although we were unable to change the specificity of alpha2 by making substitutions at residues 47, 54, and 55, we were able to alter the DNA-binding specificity by making substitutions at residue 50 in the homeodomain. Since other homeodomain proteins show similar changes in specificity with substitutions at residue 50, this suggests that there is at least a partial DNA recognition code at this position.
2000
Kim, J, Bortz E, Zhong H, Leeuw T, Leberer E, Vershon AK, Hirsch JP.  2000.  Localization and Signaling of G(beta) Subunit Ste4p are Controlled by A-factor Receptor and the A-specific Protein Asg7p. Mol Cell Biol. 20:8826-8835. Abstract
Haploid yeast cells initiate pheromone signaling upon the binding of pheromone to its receptor and activation of the coupled G protein. A regulatory process termed receptor inhibition blocks pheromone signaling when the a-factor receptor is inappropriately expressed in MATa cells. Receptor inhibition blocks signaling by inhibiting the activity of the G protein beta subunit, Ste4p. To investigate how Ste4p activity is inhibited, its subcellular location was examined. In wild-type cells, alpha-factor treatment resulted in localization of Ste4p to the plasma membrane of mating projections. In cells expressing the a-factor receptor, alpha-factor treatment resulted in localization of Ste4p away from the plasma membrane to an internal compartment. An altered version of Ste4p that is largely insensitive to receptor inhibition retained its association with the membrane in cells expressing the a-factor receptor. The inhibitory function of the a-factor receptor required ASG7, an a-specific gene of previously unknown function. ASG7 RNA was induced by pheromone, consistent with increased inhibition as the pheromone response progresses. The a-factor receptor inhibited signaling in its liganded state, demonstrating that the receptor can block the signal that it initiates. ASG7 was required for the altered localization of Ste4p that occurs during receptor inhibition, and the subcellular location of Asg7p was consistent with its having a direct effect on Ste4p localization. These results demonstrate that Asg7p mediates a regulatory process that blocks signaling from a G protein beta subunit and causes its relocalization within the cell.
Acton, TB, Mead J, Steiner AM, Vershon AK.  2000.  Scanning Mutagenesis of Mcm1: Residues Required for DNa Binding, DNa Bending, and Transcriptional Activation by a MADS-box Protein. Mol Cell Biol. 20:1-11. Abstract
MCM1 is an essential gene in the yeast Saccharomyces cerevisiae and is a member of the MADS-box family of transcriptional regulatory factors. To understand the nature of the protein-DNA interactions of this class of proteins, we have made a series of alanine substitutions in the DNA-binding domain of Mcm1 and examined the effects of these mutations in vivo and in vitro. Our results indicate which residues of Mcm1 are important for viability, transcriptional activation, and DNA binding and bending. Substitution of residues in Mcm1 which are highly conserved among the MADS-box proteins are lethal to the cell and abolish DNA binding in vitro. These positions have almost identical interactions with DNA in both the serum response factor-DNA and alpha2-Mcm1-DNA crystal structures, suggesting that these residues make up a conserved core of protein-DNA interactions responsible for docking MADS-box proteins to DNA. Substitution of residues which are not as well conserved among members of the MADS-box family play important roles in contributing to the specificity of DNA binding. These results suggest a general model of how MADS-box proteins recognize and bind DNA. We also provide evidence that the N-terminal extension of Mcm1 may have considerable conformational freedom, possibly to allow binding to different DNA sites. Finally, we have identified two mutants at positions which are critical for Mcm1-mediated DNA bending that have a slow-growth phenotype. This finding is consistent with our earlier results, indicating that DNA bending may have a role in Mcm1 function in the cell.
Vershon, AK, Pierce M.  2000.  Transcriptional Regulation of Meiosis in Yeast. Curr Opin Cell Biol. 12:334-339. Abstract
The genes required for meiosis and sporulation in yeast are expressed at specific points in a highly regulated temporal pathway. Recent experiments using DNA microarrays to examine gene expression during meiosis and the identification of many regulatory factors have provided important advances in our understanding of how genes are regulated at the different stages of meiosis.
1999
Zhong, H, McCord R, Vershon AK.  1999.  Identification of Target Sites of the Alpha2-Mcm1 Repressor Complex in the Yeast Genome. Genome Res. 9:1040-1047. Abstract
The alpha2 and Mcm1 proteins bind DNA as a heterotetramer to repress transcription of cell-type-specific genes in the yeast Saccharomyces cerevisiae. Based on the DNA sequence requirements for binding by the alpha2-Mcm1 complex, we have searched the yeast genome for all potential alpha2-Mcm1 binding sites. Genes adjacent to the sites were examined for expression in the different cell mating types. These sites were further analyzed by cloning the sequences into a heterologous promoter and assaying for alpha2-Mcm1-dependent repression in vivo and DNA-binding affinity in vitro. Fifty-nine potential binding sites were identified in the search. Thirty-seven sites are located within or downstream of coding region of the gene. None of the sites assayed from this group are functional repressor sites in vivo or bound by the alpha2-Mcm1 complex in vitro. Among the remaining 22 sites, six are in the promoters of known alpha-specific genes and two other sites have an alpha2-Mcm1-dependent role in determining the direction of mating type switching. Among the remaining sequences, we have identified a functional site located in the promoter region of a previously uncharacterized gene, SCYJL170C. This site functions to repress transcription of a heterologous promoter and the alpha2-Mcm1 complex binds to the site in vitro. SCYJL170C is repressed by alpha2-Mcm1 in vivo and therefore using this method we have identified a new a-specific gene, which we call ASG7.
Xie, J, Pierce M, Gailus-Durner V, Wagner M, Winter E, Vershon AK.  1999.  Sum1 and Hst1 Repress Middle Sporulation-specific gene Expression During Mitosis in Saccharomyces Cerevisiae. EMBO J. 18:6448-6454. Abstract
Meiotic development in yeast is characterized by the sequential induction of temporally distinct classes of genes. Genes that are induced at the middle stages of the pathway share a promoter element, termed the middle sporulation element (MSE), which interacts with the Ndt80 transcriptional activator. We have found that a subclass of MSEs are strong repressor sites during mitosis. SUM1 and HST1, genes previously associated with transcriptional silencing, are required for MSE-mediated repression. Sum1 binds specifically in vitro to MSEs that function as strong repressor sites in vivo. Repression by Sum1 is gene specific and does not extend to neighboring genes. These results suggest that mechanisms used to silence large regions of chromatin may also be used to regulate the expression of specific genes during development. NDT80 is regulated during mitosis by both the Sum1 and Ume6 repressors. These results suggest that progression through sporulation may be controlled by the regulated competition between the Sum1 repressor and Ndt80 activator at key MSEs.
Jin, Y, Zhong H, Vershon AK.  1999.  The Yeast a1 and Alpha2 Homeodomain Proteins do not Contribute Equally to Heterodimeric DNa Binding. Mol Cell Biol. 19:585-593. Abstract
In diploid cells of the yeast Saccharomyces cerevisiae, the alpha2 and a1 homeodomain proteins bind cooperatively to sites in the promoters of haploid cell-type-specific genes (hsg) to repress their expression. Although both proteins bind to the DNA, in the alpha2 homeodomain substitutions of residues that are involved in contacting the DNA have little or no effect on repression in vivo or cooperative DNA binding with a1 protein in vitro. This result brings up the question of the contribution of each protein in the heterodimer complex to the DNA-binding affinity and specificity. To determine the requirements for the a1-alpha2 homeodomain DNA recognition, we systematically introduced single base-pair substitutions in an a1-alpha2 DNA-binding site and examined their effects on repression in vivo and DNA binding in vitro. Our results show that nearly all substitutions that significantly decrease repression and DNA-binding affinity are at positions which are specifically contacted by either the alpha2 or a1 protein. Interestingly, an alpha2 mutant lacking side chains that make base-specific contacts in the major groove is able to discriminate between the wild-type and mutant DNA sites with the same sequence specificity as the wild-type protein. These results suggest that the specificity of alpha2 DNA binding in complex with a1 does not rely solely on the residues that make base-specific contacts. We have also examined the contribution of the a1 homeodomain to the binding affinity and specificity of the complex. In contrast to the lack of a defective phenotype produced by mutations in the alpha2 homeodomain, many of the alanine substitutions of residues in the a1 homeodomain have large effects on a1-alpha2-mediated repression and DNA binding. This result shows that the two proteins do not make equal contributions to the DNA-binding affinity of the complex.