Publications

2016
Delatte, B, Wang F, Ngoc L V, Collignon E, Bonvin E, Deplus R, Calonne E, Hassabi B, Putmans P, Awe S et al..  2016.  Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science. 351(6270):282-285. AbstractWebsite
Hydroxymethylcytosine, well described in DNA, occurs also in RNA. Here, we show that hydroxymethylcytosine preferentially marks polyadenylated RNAs and is deposited by Tet in Drosophila. We map the transcriptome-wide hydroxymethylation landscape, revealing hydroxymethylcytosine in the transcripts of many genes, notably in coding sequences, and identify consensus sites for hydroxymethylation. We found that RNA hydroxymethylation can favor mRNA translation. Tet and hydroxymethylated RNA are found to be most abundant in the Drosophila brain, and Tet-deficient fruitflies suffer impaired brain development, accompanied by decreased RNA hydroxymethylation. This study highlights the distribution, localization, and function of cytosine hydroxymethylation and identifies central roles for this modification in Drosophila.
2014
Minakhina, S, Changela N, Steward R.  2014.  Zfrp8/PDCD2 is required in ovarian stem cells and interacts with the piRNA pathway machinery.. Development. 141(2):259-268. AbstractWebsite
The maintenance of stem cells is central to generating diverse cell populations in many tissues throughout the life of an animal. Elucidating the mechanisms involved in how stem cells are formed and maintained is crucial to understanding both normal developmental processes and the growth of many cancers. Previously, we showed that Zfrp8/PDCD2 is essential for the maintenance of Drosophila hematopoietic stem cells. Here, we show that Zfrp8/PDCD2 is also required in both germline and follicle stem cells in the Drosophila ovary. Expression of human PDCD2 fully rescues the Zfrp8 phenotype, underlining the functional conservation of Zfrp8/PDCD2. The piRNA pathway is essential in early oogenesis, and we find that nuclear localization of Zfrp8 in germline stem cells and their offspring is regulated by some piRNA pathway genes. We also show that Zfrp8 forms a complex with the piRNA pathway protein Maelstrom and controls the accumulation of Maelstrom in the nuage. Furthermore, Zfrp8 regulates the activity of specific transposable elements also controlled by Maelstrom and Piwi. Our results suggest that Zfrp8/PDCD2 is not an integral member of the piRNA pathway, but has an overlapping function, possibly competing with Maelstrom and Piwi.
2013
Barbosa, N, Minakhina S, Medina DJ, Balsara B, Greenwood S, Huzzy L, Rabson AB, Steward R, Schaar DG.  2013.  PDCD2 functions in cancer cell proliferation and predicts relapsed leukemia.. Cancer biology & therapy. 14(6):546-555. AbstractWebsite
PDCD2 is an evolutionarily conserved eukaryotic protein with unknown function. The Drosophlia PDCD2 ortholog Zfrp8 has an essential function in fly hematopoiesis. Zfrp8 mutants exhibit marked lymph gland hyperplasia that results from increased proliferation of partially differentiated hemocytes, suggesting Zfrp8 may participate in cell growth. Based on the above observations we have focused on the role of PDCD2 in human cancer cell proliferation and hypothesized that aberrant PDCD2 expression may be characteristic of human malignancies. We report that PDCD2 is highly expressed in human acute leukemia cells as well as in normal hematopoietic progenitors. PDCD2 knockdown in cancer cells impairs their proliferation, but not viability relative to parental cells, supporting the notion that PDCD2 overexpression facilitates cancer cell growth. Prospective analysis of PDCD2 in acute leukemia patients indicates PDCD2 RNA expression correlates with disease status and is a significant predictor of clinical relapse. PDCD2's role in cell proliferation and its high expression in human malignancies make it an attractive, novel potential molecular target for new anti-cancer therapies.
2011
Minakhina, S, Tan W, Steward R.  2011.  JAK/STAT and the GATA factor Pannier control hemocyte maturation and differentiation in Drosophila. Dev Biol. 352(2):308-316.