Publications

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Β
Brown, BA, Padgett RW, Hardies SC, Hutchison CA, Edgell MH.  1982.  β-globin transcript found in induced murine erythroleukemia cells is homologous to the beta h0 and beta h1 genes. Proceedings of the National Academy of Sciences of the United States of America. 79:2753-7. AbstractWebsite
RNA transcripts complementary to at least one of the four beta-globin homologous genes (beta h) are found in high concentration in the murine erythroleukemic (MEL) cell line GM979 after butyric acid induction. Hybridization data indicate that the gene expressed is Hbb-beta h0 or Hbb-beta h1, or both. The level of beta h0/1 transcripts in the MEL cell is similar to the level of adult transcripts. The Hbb-beta h0/1 transcript is about 800 nucleotides in length. In addition, there is a larger beta h0/1 transcript of the same size and relative intensity as the adult beta-globin precursor. We also report significant levels of embryonic gene Hbb-y transcripts in induced GM979 cells. We have determined that the GM979 cell line has the [Hbb]s haplotype on the basis of an examination of its globin DNA restriction pattern. An additional MEL cell line of haplotype [Hbb]d (DBA/2 line 6A11A) was examined and found to contain no significant level of Hbb-beta h0, Hbb-beta h1, Hbb-beta h2, or Hbb-y gene transcripts.
Z
Rauskolb, C, Pan G, Reddy BVVG, Oh H, Irvine KD.  2011.  Zyxin links fat signaling to the hippo pathway. PLoS Biology. 9:e1000624. AbstractWebsite
The Hippo signaling pathway has a conserved role in growth control and is of fundamental importance during both normal development and oncogenesis. Despite rapid progress in recent years, key steps in the pathway remain poorly understood, in part due to the incomplete identification of components. Through a genetic screen, we identified the Drosophila Zyxin family gene, Zyx102 (Zyx), as a component of the Hippo pathway. Zyx positively regulates the Hippo pathway transcriptional co-activator Yorkie, as its loss reduces Yorkie activity and organ growth. Through epistasis tests, we position the requirement for Zyx within the Fat branch of Hippo signaling, downstream of Fat and Dco, and upstream of the Yorkie kinase Warts, and we find that Zyx is required for the influence of Fat on Warts protein levels. Zyx localizes to the sub-apical membrane, with distinctive peaks of accumulation at intercellular vertices. This partially overlaps the membrane localization of the myosin Dachs, which has similar effects on Fat-Hippo signaling. Co-immunoprecipitation experiments show that Zyx can bind to Dachs and that Dachs stimulates binding of Zyx to Warts. We also extend characterization of the Ajuba LIM protein Jub and determine that although Jub and Zyx share C-terminal LIM domains, they regulate Hippo signaling in distinct ways. Our results identify a role for Zyx in the Hippo pathway and suggest a mechanism for the role of Dachs: because Fat regulates the localization of Dachs to the membrane, where it can overlap with Zyx, we propose that the regulated localization of Dachs influences downstream signaling by modulating Zyx-Warts binding. Mammalian Zyxin proteins have been implicated in linking effects of mechanical strain to cell behavior. Our identification of Zyx as a regulator of Hippo signaling thus also raises the possibility that mechanical strain could be linked to the regulation of gene expression and growth through Hippo signaling.
Minakhina, S, Changela N, Steward R.  2014.  Zfrp8/PDCD2 is required in ovarian stem cells and interacts with the piRNA pathway machinery.. Development. 141(2):259-268. AbstractWebsite
The maintenance of stem cells is central to generating diverse cell populations in many tissues throughout the life of an animal. Elucidating the mechanisms involved in how stem cells are formed and maintained is crucial to understanding both normal developmental processes and the growth of many cancers. Previously, we showed that Zfrp8/PDCD2 is essential for the maintenance of Drosophila hematopoietic stem cells. Here, we show that Zfrp8/PDCD2 is also required in both germline and follicle stem cells in the Drosophila ovary. Expression of human PDCD2 fully rescues the Zfrp8 phenotype, underlining the functional conservation of Zfrp8/PDCD2. The piRNA pathway is essential in early oogenesis, and we find that nuclear localization of Zfrp8 in germline stem cells and their offspring is regulated by some piRNA pathway genes. We also show that Zfrp8 forms a complex with the piRNA pathway protein Maelstrom and controls the accumulation of Maelstrom in the nuage. Furthermore, Zfrp8 regulates the activity of specific transposable elements also controlled by Maelstrom and Piwi. Our results suggest that Zfrp8/PDCD2 is not an integral member of the piRNA pathway, but has an overlapping function, possibly competing with Maelstrom and Piwi.
Y
Oh, H, Irvine KD.  2010.  Yorkie: the final destination of Hippo signaling. Trends in Cell Biology. 20:410-7. AbstractWebsite
The Hippo signaling pathway is a key regulator of growth during animal development, whereas loss of normal Hippo pathway activity is associated with a wide range of cancers. Hippo signaling represses growth by inhibiting the activity of a transcriptional co-activator protein, known as Yorkie in Drosophila and Yap in vertebrates. In the 5 years since the first report linking Yorkie to Hippo signaling, intense interest in this pathway has led to rapid increases in our understanding of the action and regulation of Yorkie/Yap, which we review here. These studies have also emphasized the complexity of Yorkie/Yap regulation, including multiple, distinct mechanisms for repressing its transcriptional activity, and multiple DNA-binding partner proteins that can direct Yorkie to distinct downstream target genes.
Oh, H, Slattery M, Ma L, White KP, Mann RS, Irvine KD.  2014.  Yorkie Promotes Transcription by Recruiting a Histone Methyltransferase Complex.. Cell reports. AbstractWebsite
Hippo signaling limits organ growth by inhibiting the transcriptional coactivator Yorkie. Despite the key role of Yorkie in both normal and oncogenic growth, the mechanism by which it activates transcription has not been defined. We report that Yorkie binding to chromatin correlates with histone H3K4 methylation and is sufficient to locally increase it. We show that Yorkie can recruit a histone methyltransferase complex through binding between WW domains of Yorkie and PPxY sequence motifs of NcoA6, a subunit of the Trithorax-related (Trr) methyltransferase complex. Cell culture and in vivo assays establish that this recruitment of NcoA6 contributes to Yorkie's ability to activate transcription. Mammalian NcoA6, a subunit of Trr-homologous methyltransferase complexes, can similarly interact with Yorkie's mammalian homolog YAP. Our results implicate direct recruitment of a histone methyltransferase complex as central to transcriptional activation by Yorkie, linking the control of cell proliferation by Hippo signaling to chromatin modification.
Zhong, H, Vershon AK.  1997.  The Yeast Homeodomain Protein MATalpha2 Shows Extended DNa Binding Specificity in Complex with Mcm1. J Biol Chem. 272:8402-8409. Abstract
The MATalpha2 (alpha2) repressor interacts with the Mcm1 protein to turn off a-cell type-specific genes in the yeast Saccharomyces cerevisiae. We compared five natural alpha2-Mcm1 sites with an alpha2-Mcm1 symmetric consensus site (AMSC) for their relative strength of repression and found that the AMSC functions slightly better than any of the natural sites. To further investigate the DNA binding specificity of alpha2 in complex with Mcm1, symmetric substitutions at each position in the alpha2 half-sites of AMSC were constructed and assayed for their effect on repression in vivo and DNA binding affinity in vitro. As expected, substitutions at positions in which there are base-specific contacts decrease the level of repression. Interestingly, substitutions at other positions, in which there are no apparent base-specific contacts made by the protein in the alpha2-DNA co-crystal structure, also significantly decrease repression. As an alternative method to examining the DNA binding specificity of alpha2, we performed in vitro alpha2 binding site selection experiments in the presence and absence of Mcm1. In the presence of Mcm1, the consensus sequences obtained were extended and more closely related to the natural alpha2 sites than the consensus sequence obtained in the absence of Mcm1. These results demonstrate that in the presence of Mcm1 the sequence specificity of alpha2 is extended to these positions.
Jin, Y, Zhong H, Vershon AK.  1999.  The Yeast a1 and Alpha2 Homeodomain Proteins do not Contribute Equally to Heterodimeric DNa Binding. Mol Cell Biol. 19:585-593. Abstract
In diploid cells of the yeast Saccharomyces cerevisiae, the alpha2 and a1 homeodomain proteins bind cooperatively to sites in the promoters of haploid cell-type-specific genes (hsg) to repress their expression. Although both proteins bind to the DNA, in the alpha2 homeodomain substitutions of residues that are involved in contacting the DNA have little or no effect on repression in vivo or cooperative DNA binding with a1 protein in vitro. This result brings up the question of the contribution of each protein in the heterodimer complex to the DNA-binding affinity and specificity. To determine the requirements for the a1-alpha2 homeodomain DNA recognition, we systematically introduced single base-pair substitutions in an a1-alpha2 DNA-binding site and examined their effects on repression in vivo and DNA binding in vitro. Our results show that nearly all substitutions that significantly decrease repression and DNA-binding affinity are at positions which are specifically contacted by either the alpha2 or a1 protein. Interestingly, an alpha2 mutant lacking side chains that make base-specific contacts in the major groove is able to discriminate between the wild-type and mutant DNA sites with the same sequence specificity as the wild-type protein. These results suggest that the specificity of alpha2 DNA binding in complex with a1 does not rely solely on the residues that make base-specific contacts. We have also examined the contribution of the a1 homeodomain to the binding affinity and specificity of the complex. In contrast to the lack of a defective phenotype produced by mutations in the alpha2 homeodomain, many of the alanine substitutions of residues in the a1 homeodomain have large effects on a1-alpha2-mediated repression and DNA binding. This result shows that the two proteins do not make equal contributions to the DNA-binding affinity of the complex.
W
Liu, Z, Li X, Wang T, Messing J, Xu J-H.  2015.  The Wukong Terminal-Repeat Retrotransposon in Miniature (TRIM) Elements in Diverse Maize Germplasm.. G3 (Bethesda, Md.). 5(8):1585-92. AbstractWebsite
TRIMs (terminal-repeat retrotransposons in miniature), which are characterized by their small size, have been discovered in all investigated vascular plants and even in animals. Here, we identified a highly conservative TRIM family referred to as Wukong elements in the maize genome. The Wukong family shows a distinct pattern of tandem arrangement in the maize genome suggesting a high rate of unequal crossing over. Estimation of insertion times implies a burst of retrotransposition activity of the Wukong family after the allotetraploidization of maize. Using next-generation sequencing data, we detected 87 new Wukong insertions in parents of the maize NAM population relative to the B73 reference genome and found abundant insertion polymorphism of Wukong elements in 75 re-sequenced maize lines, including teosinte, landraces, and improved lines. These results suggest that Wukong elements possessed a persistent retrotransposition activity throughout maize evolution. Moreover, the phylogenetic relationships among 76 maize inbreds and their relatives based on insertion polymorphisms of Wukong elements should provide us with reliable molecular markers for biodiversity and genetics studies.
Boucher, HW, Ambrose PG, Chambers HF, Ebright RH, Jezek A, Murray BE, Newland JG, Ostrowsky B, Rex JH.  2017.  White Paper: Developing Antimicrobial Drugs for Resistant Pathogens, Narrow-spectrum Indications, and Unmet Needs.. Journal of Infectious Diseases. 216:226-238. Abstract
Despite progress in antimicrobial drug development, a critical need persists for new, feasible pathways to develop antibacterial agents to treat people infected with drug-resistant bacteria. Infections due to resistant Gram-negative bacilli continue to cause unacceptable morbidity and mortality. Antibacterial agents have been traditionally studied in non-inferiority clinical trials that focus on one site of infection (eg, complicated urinary tract infections, intra-abdominal infections), yet these designs may not be optimal, and often are not feasible, for study of infections caused by drug-resistant bacteria. Over the past several years, multiple stakeholders have worked to develop consensus regarding paths forward with a goal of facilitating timely conduct of antimicrobial development. Here we advocate for a novel and pragmatic approach and, towards this end, present feasible trial designs for antibacterial agents that could enable conduct of narrow-spectrum, organism-specific clinical trials and ultimately approval of critically needed new antibacterial agents.
Smith, PF, Kaplan C, Sheats JE, Robinson DM, McCool NS, Mezle N, Dismukes CG.  2014.  What determines catalyst functionality in molecular water oxidation? Dependence on ligands and metal nuclearity in cobalt clusters. Inorganic chemistry. 53(4):2113-21. Abstract
The metal-oxo M4O4 "cubane" topology is of special significance to the field of water oxidation as it represents the merging of bioinspired structural principles derived from natural photosynthesis with successful artificial catalysts known to date. Herein, we directly compare the rates of water oxidation/O2 evolution catalyzed by six cobalt-oxo clusters including the Co4O4 cubanes, Co4O4(OAc)4(py)4 and [Co4O4(OAc)2(bpy)4](2+), using the common Ru(bpy)3(2+)/S2O8(2-) photo-oxidant assay. At pH 8, the first-order rate constants for these cubanes differ by 2-fold, 0.030 and 0.015 s(-1), respectively, reflecting the number of labile carboxylate sites that allow substrate water binding in a pre-equilibrium step before O2 release. Kinetic results reveal a deprotonation step occurs on this pathway and that two electrons are removed before O2 evolution occurs. The Co4O4 cubane core is shown to be the smallest catalytic unit for the intramolecular water oxidation pathway, as neither "incomplete cubane" trimers [Co3O(OH)3(OAc)2(bpy)3](2+) and [Co3O(OH)2(OAc)3(py)5](2+) nor "half cubane" dimers [Co2(OH)2(OAc)3(bpy)2](+) and [Co2(OH)2(OAc)3(py)4](+) were found capable of evolving O2, despite having the same ligand sets as their cubane counterparts. Electrochemical studies reveal that oxidation of both cubanes to formally Co4(3III,IV) (0.7 V vs Ag/AgCl) occurs readily, while neither dimers nor trimers are oxidized below 1.5 V, pointing to appreciably greater charge delocalization in the [Co4O4](5+) core. The origin of catalytic activity by Co4O4 cubanes illustrates three key features for water oxidation: (1) four one-electron redox metals, (2) efficient charge delocalization of the first oxidation step across the Co4O4 cluster, allowing for stabilization of higher oxidizing equivalents, and (3) terminal coordination site for substrate aquo/oxo formation.
Kolling, DR, Cox N, Ananyev GM, Pace RJ, Dismukes CG.  2012.  What are the oxidation states of manganese required to catalyze photosynthetic water oxidation? Biophysical journal. 103(2):313-22. Abstract
Photosynthetic O(2) production from water is catalyzed by a cluster of four manganese ions and a tyrosine residue that comprise the redox-active components of the water-oxidizing complex (WOC) of photosystem II (PSII) in all known oxygenic phototrophs. Knowledge of the oxidation states is indispensable for understanding the fundamental principles of catalysis by PSII and the catalytic mechanism of the WOC. Previous spectroscopic studies and redox titrations predicted the net oxidation state of the S(0) state to be (Mn(III))(3)Mn(IV). We have refined a previously developed photoassembly procedure that directly determines the number of oxidizing equivalents needed to assemble the Mn(4)Ca core of WOC during photoassembly, starting from free Mn(II) and the Mn-depleted apo-WOC complex. This experiment entails counting the number of light flashes required to produce the first O(2) molecules during photoassembly. Unlike spectroscopic methods, this process does not require reference to synthetic model complexes. We find the number of photoassembly intermediates required to reach the lowest oxidation state of the WOC, S(0), to be three, indicating a net oxidation state three equivalents above four Mn(II), formally (Mn(III))(3)Mn(II), whereas the O(2) releasing state, S(4), corresponds formally to (Mn(IV))(3)Mn(III). The results from this study have major implications for proposed mechanisms of photosynthetic water oxidation.
Robinson, DM, Go Y B, Greenblatt M, Dismukes CG.  2010.  Water Oxidation by λ-MnO2: Catalysis by the Cubical Mn4O4 Subcluster Obtained by Delithiation of Spinel LiMn2O4. Journal of the American Chemical Society. 132:11467-11469. AbstractWebsite
null
Smith, PF, Hunt L, Laursen AB, Sagar V, Kaushik S, Calvinho KU, Marotta G, Mosconi E, De Angelis F, Dismukes GC.  2015.  Water Oxidation by the [Co4O4(OAc)4(py)4](+) Cubium is Initiated by OH(-) Addition.. J Am Chem Soc. 137(49):15460-15468. Abstract
The cobalt cubium Co4O4(OAc)4(py)4(ClO4) (1A(+)) containing the mixed valence [Co4O4](5+) core is shown by multiple spectroscopic methods to react with hydroxide (OH(-)) but not with water molecules to produce O2. The yield of reaction products is stoichiometric (>99.5%): 41A(+) + 4OH(-) → O2 + 2H2O + 41A. By contrast, the structurally homologous cubium Co4O4(trans-OAc)2(bpy)4(ClO4)3, 1B(ClO4)3, produces no O2. EPR/NMR spectroscopies show clean conversion to cubane 1A during O2 evolution with no Co(2+) or Co3O4 side products. Mass spectrometry of the reaction between isotopically labeled μ-(16)O(bridging-oxo) 1A(+) and (18)O-bicarbonate/water shows (1) no exchange of (18)O into the bridging oxos of 1A(+), and (2) (36)O2 is the major product, thus requiring two OH(-) in the reactive intermediate. DFT calculations of solvated intermediates suggest that addition of two OH(-) to 1A(+) via OH(-) insertion into Co-OAc bonds is energetically favored, followed by outer-sphere oxidation to intermediate [1A(OH)2](0). The absence of O2 production by cubium 1B(3+) indicates the reactive intermediate derived from 1A(+) requires gem-1,1-dihydoxo stereochemistry to perform O-O bond formation. Outer-sphere oxidation of this intermediate by 2 equiv of 1A(+) accounts for the final stoichiometry. Collectively, these results and recent literature (Faraday Discuss., doi:10.1039/C5FD00076A and J. Am. Chem. Soc. 2015, 137, 12865-12872) validate the [Co4O4](4+/5+) cubane core as an intrinsic catalyst for oxidation of hydroxide by an inner-sphere mechanism.
Staley, B K, Irvine KD.  2010.  Warts and yorkie mediate intestinal regeneration by influencing stem cell proliferation. Current biology : CB. 20:1580-7. AbstractWebsite
Homeostasis in the Drosophila midgut is maintained by stem cells [1, 2]. The intestinal epithelium contains two types of differentiated cells that are lost and replenished: enteroendocrine (EE) cells and enterocytes (ECs). Intestinal stem cells (ISCs) are the only cells in the adult midgut that proliferate [3, 4], and ISC divisions give rise to an ISC and an enteroblast (EB), which differentiates into an EC or an EE cell [3-5]. If the midgut epithelium is damaged, then ISC proliferation increases [6-12]. Damaged ECs express secreted ligands (Unpaired proteins) that activate Jak-Stat signaling in ISCs and EBs to promote their proliferation and differentiation [7, 9, 13, 14]. We show that the Hippo pathway components Warts and Yorkie mediate a transition from low- to high-level ISC proliferation to facilitate regeneration. The Hippo pathway regulates growth in diverse organisms and has been linked to cancer [15, 16]. Yorkie is activated in ECs in response to tissue damage or activation of the damage-sensing Jnk pathway. Activation of Yorkie promotes expression of unpaired genes and triggers a nonautonomous increase in ISC proliferation. Our observations uncover a role for Hippo pathway components in regulating stem cell proliferation and intestinal regeneration.
V
Wu, XR, Chen Z, Shende A, Dooner HK, Folk WR.  2006.  Visualizing bz1 missense suppression in Zea mays: an assay for monocot tRNA expression and utilization. Plant Mol. Biol.. 61:795–798. Abstract
Val missense mutation, visualized by the development of anthocyanin pigment. Missense suppression is blocked by mutation of tRNA(ala)(GAC) at a site that prevents aminoacylation by the dicot alanyl-tRNA synthetase, indicating that features identified for expression and utilization of dicot tRNAs also function in monocots. This assay of the expression and utilization of tRNA(ala)(GAC) also can be used to study a variety of tRNAs and their genes, most of which can be relatively easily altered to be charged by alanyl tRNA synthetase.
Tungsuchat-Huang, T, Slivinski KM, Sinagawa-Garcia SR, Maliga P.  2011.  Visual spectinomycin resistance (aadA(au)) gene for facile identification of transplastomic sectors in tobacco leaves. Plant Mol. Biol.. 76:453-61. AbstractWebsite
Identification of a genetically stable Nicotiana tabacum (tobacco) plant with a uniform population of transformed plastid genomes (ptDNA) takes two cycles of plant regeneration from chimeric leaves and analysis of multiple shoots by Southern probing in each cycle. Visual detection of transgenic sectors facilitates identification of transformed shoots in the greenhouse, complementing repeated cycles of blind purification in culture. In addition, it provides a tool to monitor the maintenance of transplastomic state. Our current visual marker system requires two genes: the aurea bar (bar(au)) gene that confers a golden leaf phenotype and a spectinomycin resistance (aadA) gene that is necessary for the introduction of the bar(au) gene in the plastid genome. We developed a novel aadA gene that fulfills both functions: it is a conventional selectable aadA gene in culture, and allows detection of transplastomic sectors in the greenhouse by leaf color. Common causes of pigment deficiency in leaves are mutations in photosynthetic genes, which affect chlorophyll accumulation. We use a different approach to achieve pigment deficiency: post-transcriptional interference with the expression of the clpP1 plastid gene by aurea aadA(au) transgene. This interference produces plants with reduced growth and a distinct color, but maintains a wild-type gene set and the capacity for photosynthesis. Importantly, when the aurea gene is removed, green pigmentation and normal growth rate are restored. Because the aurea plants are viable, the new aadA(au) genes are useful to query rare events in large populations and for in planta manipulation of the plastid genome.
Tungsuchat-Huang, T, Maliga P.  2012.  Visual marker and Agrobacterium-delivered recombinase enable the manipulation of the plastid genome in greenhouse-grown tobacco plants. Plant J.. 70:717-25. AbstractWebsite
Successful manipulation of the plastid genome (ptDNA) has been carried out so far only in tissue-culture cells, a limitation that prevents plastid transformation being applied in major agronomic crops. Our objective is to develop a tissue-culture independent protocol that enables manipulation of plastid genomes directly in plants to yield genetically stable seed progeny. We report that in planta excision of a plastid aurea bar gene (bar(au) ) is detectable in greenhouse-grown plants by restoration of the green pigmentation in tobacco leaves. The P1 phage Cre or PhiC31 phage Int site-specific recombinase was delivered on the Agrobacterium T-DNA injected at the axillary bud site, resulting in the excision of the target-site flanked marker gene. Differentiation of new apical meristems was forced by decapitating the plants above the injection site. The new shoot apex that differentiated at the injection site contained bar(au)-free plastids in 30-40% of the injected plants, of which 7% transmitted the bar(au)-free plastids to the seed progeny. The success of obtaining seed with bar(au)-free plastids depended on repeatedly forcing shoot development from axillary buds, a process that was guided by the size and position of green sectors in the leaves. The success of in planta plastid marker excision proved that manipulation of the plastid genomes is feasible within an intact plant. Extension of the protocol to in planta plastid transformation depends on the development of new protocols for the delivery of transforming DNA encoding visual markers.
Heidecker, G, Messing J, Gronenborn B.  1980.  A versatile primer for DNA sequencing in the M13mp2 cloning system. Gene. 10:69-73. AbstractWebsite
A primer for DNA sequencing by the chain-termination method in the M13mp2 cloning system was constructed and amplified. The primer was isolated as an EcoRI/AluI restriction fragment. After conversion of the AluI end into an EcoRI end the fragment was cloned in pBR325 from which it can be recovered by cleavage with EcoRI. The primer hybridizes to the single-stranded DNA of the mature M13mp2 phage next to the site of insertion thereby directing DNA synthesis along the inserted DNA.
Das, OP, Messing J.  1994.  Variegated phenotype and developmental methylation changes of a maize allele originating from epimutation. Genetics. 136:1121-41. AbstractWebsite
Two instances of genetic transmission of spontaneous epimutation of the maize P-rr gene were identified. Transmission gave rise to two similar, moderately stable alleles, designated P-pr-1 and P-pr-2, that exhibited Mendelian behavior. Both isolates of P-pr conditioned a variable and variegated phenotype, unlike the uniform pigmentation conditioned by P-rr. Extensive genomic analysis failed to reveal insertions, deletions or restriction site polymorphisms between the new allele and its progenitor. However, methylation of the P gene was increased in P-pr relative to P-rr, and was greatly reduced (though not lost) in a revertant to uniform pigmentation. Variability in pigmentation conditioned by P-pr correlated with variability in transcript levels of the P gene, and both correlated inversely with variability in its methylation. Part of the variability in methylation could be accounted for by a developmental decrease in methylation in all tissues of plants carrying P-pr. We hypothesize that the variegated phenotype results from a general epigenetic pathway which causes a progressive decrease in methylation and increase in expression potential of the P gene as a function of cell divisions in each meristem of the plant. This renders all tissues chimeric for a functional gene; chimerism is visualized as variegation only in pericarp due to the tissue specificity of P gene expression. Therefore, this allele that originates from epimutation may exemplify an epigenetic mechanism for variegation in maize.
Hawkins, JS, Delgado V, Feng L, Carlise M, Dooner HK, Bennetzen JL.  2014.  Variation in allelic expression associated with a recombination hotspot in Zea mays.. The Plant Journal, DOI: 10.1111/tpj.12537. Abstract
Gene expression is a complex process, requiring precise spatial and temporal regulation of transcription factor activity; however, modifications of individual cis- and trans-acting modules can be molded by natural selection to create a sizeable number of novel phenotypes. Results from decades of research indicate that developmental and phenotypic divergence among eukaryotic organisms is driven primarily by variation in levels of gene expression that are dictated by mutations either in structural or regulatory regions of genes. The relative contributions and interplay of cis- and trans-acting regulatory factors to this evolutionary process, however, remain poorly understood. Analysis of 8 genes in the Bz1-Sh1 interval of maize indicates significant allele-specific expression biases in at least one tissue for all genes, ranging from 1.3-fold to 36-fold. All detected effects were cis-regulatory in nature, although genetic background may also influence the level of expression bias and tissue specificity for some allelic combinations. Most allelic pairs exhibited the same direction and approximate intensity of bias across all four tissues; however, a subset of allelic pairs show alternating dominance across different tissue types or variation in the degree of bias in different tissues. In addition, the genes showing the most striking levels of allelic bias co-localize with a previously described recombination hotspot in this region, suggesting a naturally occurring genetic mechanism for creating regulatory variability for a subset of plant genes that may ultimately lead to evolutionary diversification.
Misra, JR, Irvine KD.  2016.  Vamana Couples Fat Signaling to the Hippo Pathway.. Developmental cell. 39(2):254-266. Abstract
The protocadherins Dachsous and Fat initiate a signaling pathway that controls growth and planar cell polarity by regulating the membrane localization of the atypical myosin Dachs. How Dachs is regulated by Fat signaling has remained unclear. Here we identify the vamana gene as playing a crucial role in regulating membrane localization of Dachs and in linking Fat and Dachsous to Dachs regulation. Vamana, an SH3-domain-containing protein, physically associates with and co-localizes with Dachs and promotes its membrane localization. Vamana also associates with the Dachsous intracellular domain and with a region of the Fat intracellular domain that is essential for controlling Hippo signaling and levels of Dachs. Epistasis experiments, structure-function analysis, and physical interaction experiments argue that Fat negatively regulates Dachs in a Vamana-dependent process. Our findings establish Vamana as a crucial component of the Dachsous-Fat pathway that transmits Fat signaling by regulating Dachs.
U
Devi, PG, Campbell EA, Darst SA, Nickels BE.  2010.  Utilization of variably spaced promoter-like elements by the bacterial RNA polymerase holoenzyme during early elongation. Mol Microbiol. 75:607-22. AbstractWebsite
The bacterial RNA polymeras holoenzyme consists of a catalytic core enzyme in complex with a sigma factor that is required for promoter-specific transcription initiation. During initiation, members of the sigma(70) family of sigma factors contact two conserved promoter elements, the -10 and -35 elements, which are separated by approximately 17 base pairs (bp). sigma(70) family members contain four flexibly linked domains. Two of these domains, sigma(2) and sigma(4), contain determinants for interactions with the promoter -10 and -35 elements respectively. sigma(2) and sigma(4) also contain core-binding determinants. When bound to core the inter-domain distance between sigma(2) and sigma(4) matches the distance between promoter elements separated by approximately 17 bp. Prior work indicates that during early elongation the nascent RNA-assisted displacement of sigma(4) from core can enable the holoenzyme to adopt a configuration in which sigma(2) and sigma(4) are bound to 'promoter-like' DNA elements separated by a single base pair. Here we demonstrate that holoenzyme can also adopt configurations in which sigma(2) and sigma(4) are bound to 'promoter-like' DNA elements separated by 0, 2 or 3 bp. Thus, our findings suggest that displacement of sigma(4) from core enables the RNA polymerase holoenzyme to adopt a broad range of 'elongation-specific' configurations.
Cowperthwaite, M, Park W, Xu Z, Yan X, Maurais SC, Dooner HK.  2002.  Use of the transposon Ac as a gene-searching engine in the maize genome. Plant Cell. 14:713–726. AbstractWebsite
1300 independent Ac transposants. The majority of transposed Ac elements are linked to either the bz or the wx donor loci on chromosome 9. A few of the insertions produce obvious visible phenotypes, but most of them do not, suggesting that these populations will be more useful for reverse genetics than for forward transposon mutagenesis. An inverse polymerase chain reaction method was adapted for the isolation of DNA adjacent to the transposed Ac elements (tac sites). Most Ac insertions were into unique DNA. By sequencing tac sites and comparing the sequences to existing databases, insertions were identified in a number of putative maize genes. The expression of most of these genes was confirmed by RNA gel blot analysis. We report here the isolation and characterization of the first 46 tac sites from the two insertion libraries.