A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Chatterjee, I, Ibanez-Ventoso C, Vijay P, Singaravelu G, Baldi C, Bair J, Ng S, Smolyanskaya A, Driscoll M, Singson A.  2013.  Dramatic fertility decline in aging C. elegans males is associated with mating execution deficits rather than diminished sperm quality. Exp. Gerontol.. 48:1156–1166. Abstract
Although much is known about female reproductive aging, fairly little is known about the causes of male reproductive senescence. We developed a method that facilitates culture maintenance of Caenorhabditis elegans adult males, which enabled us to measure male fertility as populations age, without profound loss of males from the growth plate. We find that the ability of males to sire progeny declines rapidly in the first half of adult lifespan and we examined potential factors that contribute towards reproductive success, including physical vigor, sperm quality, mating apparatus morphology, and mating ability. Of these, we find little evidence of general physical decline in males or changes in sperm number, morphology, or capacity for activation, at time points when reproductive senescence is markedly evident. Rather, it is the loss of efficient mating ability that correlates most strongly with reproductive senescence. Low insulin signaling can extend male ability to sire progeny later in life, although insulin impact on individual facets of mating behavior is complex. Overall, we suggest that combined modest deficits, predominantly affecting the complex mating behavior rather than sperm quality, sum up to block effective C. elegans male reproduction in middle adult life.
Singh, A, Irvine KD.  2012.  Drosophila as a model for understanding development and disease.. Developmental Dynamics. 241:1-2.Website
Joyce, EF, Pedersen M, Tiong S, White-Brown SK, Paul A, Campbell SD, McKim KS.  2011.  Drosophila ATM and ATR have distinct activities in the regulation of meiotic DNA damage and repair. J Cell Biol. 195:359-67. AbstractWebsite
Ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia-related (ATR) kinases are conserved regulators of cellular responses to double strand breaks (DSBs). During meiosis, however, the functions of these kinases in DSB repair and the deoxyribonucleic acid (DNA) damage checkpoint are unclear. In this paper, we show that ATM and ATR have unique roles in the repair of meiotic DSBs in Drosophila melanogaster. ATR mutant analysis indicated that it is required for checkpoint activity, whereas ATM may not be. Both kinases phosphorylate H2AV (gamma-H2AV), and, using this as a reporter for ATM/ATR activity, we found that the DSB repair response is surprisingly dynamic at the site of DNA damage. gamma-H2AV is continuously exchanged, requiring new phosphorylation at the break site until repair is completed. However, most surprising is that the number of gamma-H2AV foci is dramatically increased in the absence of ATM, but not ATR, suggesting that the number of DSBs is increased. Thus, we conclude that ATM is primarily required for the meiotic DSB repair response, which includes functions in DNA damage repair and negative feedback control over the level of programmed DSBs during meiosis.
Horner, V.L., Czank, Z., Jang, J.K., Singh, N., Williams, B.C., Puro, J., Kubli, E., Hanes, S.D., McKim, K.S., Wolfner, M.F. et al..  2006.  The Drosophila calcipressin sarah is Required for several aspects of egg activation. Curr Biol. 16:144-6.Website
Yu, K, Sturtevant MA, Biehs B, François V, Padgett RW, Blackman RK, Bier E.  1996.  The Drosophila decapentaplegic and short gastrulation genes function antagonistically during adult wing vein development. Development (Cambridge, England). 122:4033-44. AbstractWebsite
TGF-beta-related signaling pathways play diverse roles during vertebrate and invertebrate development. A common mechanism for regulating the activity of TGF-beta family members is inhibition by extracellular antagonists. Recently, the Drosophila short gastrulation (sog) gene was shown to encode a predicted diffusible factor which antagonizes signaling mediated by the TGF-beta-like Decapentaplegic (Dpp) pathway in the early blastoderm embryo. sog and dpp, which are among the earliest zygotic genes to be activated, are expressed in complementary dorsal-ventral domains. The opposing actions of sog and dpp in the early embryo have been highly conserved during evolution as their vertebrate counterparts, chordin and BMP-4, function homologously to define neural versus non-neural ectoderm in Xenopus. Here we exploit the genetically sensitive adult wing vein pattern to investigate the generality of the antagonistic relationship between sog and dpp. We show that dpp is expressed in vein primordia during pupal wing development and functions to promote vein formation. In contrast, sog is expressed in complementary intervein cells and suppresses vein formation. sog and dpp function during the same phenocritical periods (i.e. 16-28 hours after pupariation) to influence the vein versus intervein cell fate choice. The conflicting activities of dpp and sog are also revealed by antagonistic dosage-sensitive interactions between these two genes during vein development. Analysis of vein and intervein marker expression in dpp and sog mutant wings suggests that dpp promotes vein fates indirectly by activating the vein gene rhomboid (rho), and that sog functions by blocking an autoactivating Dpp feedback loop. These data support the view that Sog is a dedicated Dpp antagonist.
Das, P, Maduzia LL, Wang H, Finelli AL, Cho SH, Smith MM, Padgett RW.  1998.  The Drosophila gene Medea demonstrates the requirement for different classes of Smads in dpp signaling. Development (Cambridge, England). 125:1519-28. AbstractWebsite
Signals from transforming growth factor-beta (TGF-beta) ligands are transmitted within the cell by members of the Smad family, which can be grouped into three classes based on sequence similarities. Our previous identification of both class I and II Smads functioning in a single pathway in C. elegans, raised the issue of whether the requirement for Smads derived from different classes is a general feature of TGF-beta signaling. We report here the identification of a new Drosophila class II Smad, Medea, a close homolog of the human tumor-suppressor gene DPC4. Embryos from germline clones of both Medea and Mad (a class I Smad) are ventralized, as are embryos null for the TGF-beta-like ligand decapentaplegic (dpp). Loss of Medea also blocks dpp signaling during later development, suggesting that Medea, like Mad, is universally required for dpp signaling. Furthermore, we show that the necessity for these two closely related, non-redundant Smads, is due to their different signaling properties - upon activation of the Dpp pathway, Mad is required to actively translocate Medea into the nucleus. These results provide a paradigm for, and distinguish between, the requirement for class I and II Smads in Dpp/BMP signaling.
Mao, Y, Kucuk B, Irvine KD.  2009.  Drosophila lowfat, a novel modulator of Fat signaling. Development (Cambridge, England). 136:3223-33. AbstractWebsite
The Fat-Hippo-Warts signaling network regulates both transcription and planar cell polarity. Despite its crucial importance to the normal control of growth and planar polarity, we have only a limited understanding of the mechanisms that regulate Fat. We report here the identification of a conserved cytoplasmic protein, Lowfat (Lft), as a modulator of Fat signaling. Drosophila Lft, and its human homologs LIX1 and LIX1-like, bind to the cytoplasmic domains of the Fat ligand Dachsous, the receptor protein Fat, and its human homolog FAT4. Lft protein can localize to the sub-apical membrane in disc cells, and this membrane localization is influenced by Fat and Dachsous. Lft expression is normally upregulated along the dorsoventral boundary of the developing wing, and is responsible for elevated levels of Fat protein there. Levels of Fat and Dachsous protein are reduced in lft mutant cells, and can be increased by overexpression of Lft. lft mutant animals exhibit a wing phenotype similar to that of animals with weak alleles of fat, and lft interacts genetically with both fat and dachsous. These studies identify Lft as a novel component of the Fat signaling pathway, and the Lft-mediated elevation of Fat levels as a mechanism for modulating Fat signaling.
Maduzia, LL, Padgett RW.  1997.  Drosophila MAD, a member of the Smad family, translocates to the nucleus upon stimulation of the dpp pathway. Biochem Biophys Res Commun. 238:595-8. AbstractWebsite
Smads are a novel group of proteins which act to mediate signaling by members of the TGF-beta superfamily. Seven vertebrate Smad genes, which fall into three classes, have been reported. Members of the Class I Smads have been shown to bind to the cytoplasmic portion of the TGF-beta like receptors, where they become phosphorylated and translocate to the nucleus. Once in the nucleus they may function as transcriptional activators. We wondered if translocation to the nucleus is a general property of the Smads and whether it was evolutionarily conserved. We examined the subcellular localization of Drosophila MAD and found that it is capable of nuclear translocation, in Drosophila S2 cells, when the dpp pathway is stimulated. To prove the functional conservation of receptor/Smad interactions, we used the mouse BMP type I receptor ALK6 to stimulate the pathway and found that it is capable of sending MAD to the nucleus. These results show that cytoplasmic localization with translocation to the nucleus upon stimulation is a feature of the Smads that is conserved through evolution.
Sekelsky, JJ, McKim KS, Chin GM, Hawley RS.  1995.  The Drosophila meiotic recombination gene mei-9 encodes a homologue of the yeast excision repair protein Rad1. Genetics. 141:619-627.
Xie, T, Finelli AL, Padgett RW.  1994.  The Drosophila saxophone gene: a serine-threonine kinase receptor of the TGF-β superfamily. Science (New York, NY). 263:1756-9. AbstractWebsite
The Drosophila decapentaplegic (dpp) gene encodes a transforming growth factor-beta (TGF-beta)-like protein that plays a key role in several aspects of development. Transduction of the DPP signal was investigated by cloning of serine-threonine kinase transmembrane receptors from Drosophila because this type of receptor is specific for the TGF-beta-like ligands. Here evidence is provided demonstrating that the Drosophila saxophone (sax) gene, a previously identified female sterile locus, encodes a TGF-beta-like type I receptor. Embryos from sax mothers and dpp embryos exhibit similar mutant phenotypes during early gastrulation, and these two loci exhibit genetic interactions, which suggest that they are utilized in the same pathway. These data suggest that sax encodes a receptor for dpp.
Colombie, N, Cullen CF, Brittle AL, Jang JK, Earnshaw WC, Carmena M, McKim K, Ohkura H.  2008.  Dual roles of Incenp crucial to the assembly of the acentrosomal metaphase spindle in female meiosis. Development. 135:3239-46.Website
Gyuricza, MR, Manheimer KB, Apte V, Krishnan B, Joyce EF, McKee BD, McKim KS.  2016.  Dynamic and Stable Cohesins Regulate Synaptonemal Complex Assembly and Chromosome Segregation.. Current biology : CB. 26(13):1688-1698. Abstract
Assembly of the synaptonemal complex (SC) in Drosophila depends on two independent pathways defined by the chromosome axis proteins C(2)M and ORD. Because C(2)M encodes a Kleisin-like protein and ORD is required for sister-chromatid cohesion, we tested the hypothesis that these two SC assembly pathways depend on two cohesin complexes. Through single- and double-mutant analysis to study the mitotic cohesion proteins Stromalin (SA) and Nipped-B (SCC2) in meiosis, we provide evidence that there are at least two meiosis-specific cohesin complexes. One complex depends on C(2)M, SA, and Nipped-B. Despite the presence of mitotic cohesins SA and Nipped-B, this pathway has only a minor role in meiotic sister-centromere cohesion and is primarily required for homolog interactions. C(2)M is continuously incorporated into pachytene chromosomes even though SC assembly is complete. In contrast, the second complex, which depends on meiosis-specific proteins SOLO, SUNN, and ORD is required for sister-chromatid cohesion, localizes to the centromeres and is not incorporated during prophase. Our results show that the two cohesin complexes have unique functions and are regulated differently. Multiple cohesin complexes may provide the diversity of activities required by the meiotic cell. For example, a dynamic complex may allow the chromosomes to regulate meiotic recombination, and a stable complex may be required for sister-chromatid cohesion.
Wang, Q., Dooner HK.  2012.  Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses.. The Plant journal : for cell and molecular biology. 72(2):212-21. Abstract
Genome structure exhibits remarkable plasticity within Zea mays. To examine how haplotype structure has evolved within the Andropogoneae tribe, we have analyzed the bz gene-rich region of maize (Zea mays), the Zea teosintes mays ssp. mexicana, luxurians and diploperennis, Tripsacum dactyloides, Coix lacryma-jobi and Sorghum propinquum. We sequenced and annotated BAC clones from these species and re-annotated the orthologous Sorghum bicolor region. Gene colinearity in the region is well conserved within the genus Zea. However, the orthologous regions of Coix and Sorghum exhibited several micro-rearrangements relative to Zea, including addition, truncation and deletion of genes. The stc1 gene, involved in the production of a terpenoid insect defense signal, is evolving particularly fast, and its progressive disappearance from some species is occurring by microhomology-mediated recombination. LTR retrotransposons are the main contributors to the dynamic evolution of the bz region. Common transposon insertion sites occur among haplotypes from different Zea mays sub-species, but not outside the species. As in Zea, different patterns of interspersion between genes and retrotransposons are observed in Sorghum. We estimate that the mean divergence times between maize and Tripsacum, Coix and Sorghum are 8.5, 12.1 and 12.4 million years ago, respectively, and that between Coix and Sorghum is 9.3 million years ago. A comparison of the bz orthologous regions of Zea, Sorghum and Coix with those of Brachypodium, Setaria and Oryza allows us to infer how the region has evolved by addition and deletion of genes in the approximately 50 million years since these genera diverged from a common progenitor.
Xu, JH, Bennetzen JL, Messing J.  2012.  Dynamic gene copy number variation in collinear regions of grass genomes. Mol Biol Evol. 29:861-71. AbstractWebsite
A salient feature of genomes of higher organisms is the birth and death of gene copies. An example is the alpha prolamin genes, which encode seed storage proteins in grasses (Poaceae) and represent a medium-size gene family. To better understand the mechanism, extent, and pace of gene amplification, we compared prolamin gene copies in the genomes of two different tribes in the Panicoideae, the Paniceae and the Andropogoneae. We identified alpha prolamin (setarin) gene copies in the diploid foxtail millet (Paniceae) genome (490 Mb) and compared them with orthologous regions in diploid sorghum (730 Mb) and ancient allotetraploid maize (2,300 Mb) (Andropogoneae). Because sequenced genomes of other subfamilies of Poaceae like rice (389 Mb) (Ehrhartoideae) and Brachypodium (272 Mb) (Pooideae) do not have alpha prolamin genes, their collinear regions can serve as "empty" reference sites. A pattern emerged, where genes were copied and inserted into other chromosomal locations followed by additional tandem duplications (clusters). We observed both recent (species-specific) insertion events and older ones that are shared by these tribes. Many older copies were deleted by unequal crossing over of flanking sequences or damaged by truncations. However, some remain intact with active and inactive alleles. These results indicate that genomes reflect only a snapshot of the gene content of a species and are far less static than conventional genetics has suggested. Nucleotide substitution rates for active alpha prolamins genes were twice as high as for low copy number beta, gamma, and delta prolamin genes, suggesting that gene amplification accelerates the pace of divergence.
Bradeen, JM, Timmermans MC, Messing J.  1997.  Dynamic genome organization and gene evolution by positive selection in geminivirus (Geminiviridae). Molecular biology and evolution. 14:1114-24. AbstractWebsite
Geminiviruses (Geminiviridae) are a diverse group of plant viruses differing from other known plant viruses in possessing circular, single-stranded DNA. Current classification divides the family into three subgroups, defined in part by genome organization, insect vector, and plant host range. Previous phylogenetic assessments of geminiviruses have used DNA and/or amino acid sequences from the replication-associated and coat protein genes and have relied predominantly on distance analyses. We used amino acid and DNA sequence data from the replication-associated and coat protein genes from 22 geminivirus types in distance and parsimony analyses. Although the results of our analyses largely agree with those reported previously, we could not always predict viral relationships based on genome organization, plant host, or insect vector. Loss of correlation of these traits with phylogeny is likely due to improved sampling of geminivirus types. Unrooted parsimony trees suggest multiple independent origins for the monopartite genome. genome organization is therefore a dynamic character. Estimates of nonsynonymous and synonymous nucleotide substitutions for extant and inferred ancestral sequences were used to evaluate hypotheses that the replication-associated and coat protein sequences evolve to accommodate plant host and insect vector specificities, respectively. Results suggest that plant host specificity does not solely direct replication-associated protein-evolution but that coat protein sequence does evolve in response to insect vector specificity. Genome organization and, possibly, plant host specificity are not reliable taxonomic characters.
Popovych, N, Sun S, Ebright RH, Kalodimos CG.  2006.  Dynamically driven protein allostery.. Nature structural & molecular biology. 13(9):831-8. Abstract
Allosteric interactions are typically considered to proceed through a series of discrete changes in bonding interactions that alter the protein conformation. Here we show that allostery can be mediated exclusively by transmitted changes in protein motions. We have characterized the negatively cooperative binding of cAMP to the dimeric catabolite activator protein (CAP) at discrete conformational states. Binding of the first cAMP to one subunit of a CAP dimer has no effect on the conformation of the other subunit. The dynamics of the system, however, are modulated in a distinct way by the sequential ligand binding process, with the first cAMP partially enhancing and the second cAMP completely quenching protein motions. As a result, the second cAMP binding incurs a pronounced conformational entropic penalty that is entirely responsible for the observed cooperativity. The results provide strong support for the existence of purely dynamics-driven allostery.
Xu, J-H, Liu Q, Hu W, Wang T, Xue Q, Messing J.  2015.  Dynamics of chloroplast genomes in green plants.. Genomics. 106(4):221-31. Abstract
Chloroplasts are essential organelles, in which genes have widely been used in the phylogenetic analysis of green plants. Here, we took advantage of the breadth of plastid genomes (cpDNAs) sequenced species to investigate their dynamic changes. Our study showed that gene rearrangements occurred more frequently in the cpDNAs of green algae than in land plants. Phylogenetic trees were generated using 55 conserved protein-coding genes including 33 genes for photosynthesis, 16 ribosomal protein genes and 6 other genes, which supported the monophyletic evolution of vascular plants, land plants, seed plants, and angiosperms. Moreover, we could show that seed plants were more closely related to bryophytes rather than pteridophytes. Furthermore, the substitution rate for cpDNA genes was calculated to be 3.3×10(-10), which was almost 10 times lower than genes of nuclear genomes, probably because of the plastid homologous recombination machinery.
Burrows, EH, Bennette NB, Carrieri D, Dixon JL, Brinker A, Frada M, Bakdassabim S N, Falkowski PG, Dismukes GC.  2012.  Dynamics of Lipid Biosynthesis and Redistribution in the Marine Diatom Phaeodactylum tricornutum under Nitrate Deprivation. Bioenerg. Res. 5:876-885. Abstract
One approach to achieve continuous overproduction of lipids in microalgal “cell factories” relies upon depletion or removal of nutrients that act as competing electron sinks (e.g., nitrate and sulfate). However, this strategy can only be effective for bioenergy applications if lipid is synthesized primarily de novo (from CO2 fixation) rather than from the breakdown and interconversion of essential cellular components. In the marine diatom, Phaeodactylum tricornutum, it was determined, using 13C-bicarbonate, that cell growth in nitrate (NO 3 − )-deprived cultures resulted predominantly in de novo lipid synthesis (60 % over 3 days), and this new lipid consisted primarily of triacylglycerides (TAGs). Nearly complete preservation of 12C occurred in all previously existing TAGs in NO 3 − -deprived cultures and thus, further TAG accumulation would not be expected from inhibition of TAG lipolysis. In contrast, both high turnover and depletion of membrane lipids, phosphatidylcholines (PCs), were observed in NO 3 − -deprived cultures (both the headgroups and fatty acid chains), while less turnover was observed in NO 3 − replete cultures. Liquid chromatography-tandem mass spectrometry mass spectra and 13C labeling patterns of PC headgroups provided insight into lipid synthesis in marine diatoms, including suggestion of an internal pool of glycine betaine that feeds choline synthesis. It was also observed that 16C fatty acid chains incorporated into TAGs and PCs contained an average of 14 13C carbons, indicating substantial incorporation of 13C-bicarbonate into fatty acid chains under both nutrient states.
Garner, AL, Rammohan J, Huynh JP, Onder LM, Chen J, Bae B, Jensen D, Weiss LA, Manzano AR, Darst SA et al..  2017.  Effects of Increasing the Affinity of CarD for RNA Polymerase on Mycobacterium tuberculosis Growth, rRNA Transcription, and Virulence. Journal of Bacteriology. 199:e00698-16..
Dorsett, D, Eissenberg JC, Misulovin Z, Martens A, Redding B, McKim K.  2005.  Effects of sister chromatid cohesion proteins on cut gene expression during wing development in Drosophila. Development. 132:4743-53.Website
McKim, KS, Howell AM, Rose AM.  1988.  The effects of translocations on recombination frequency in Caenorhabditis elegans. Genetics. 120:987-1001.
Kane, NS, Vora M, Varre KJ, Padgett RW.  2016.  Efficient Screening of CRISPR/Cas9-Induced Events in Drosophila using a co-CRISPR Strategy. G3. 7(1):87-93.
Liu, G, Rogers J, Murphy CT, Rongo C.  2011.  EGF signalling activates the ubiquitin proteasome system to modulate C. elegans lifespan. EMBO J. 30:2990-3003. AbstractWebsite
Epidermal growth factor (EGF) signalling regulates growth and differentiation. Here, we examine the function of EGF signalling in Caenorhabditis elegans lifespan. We find that EGF signalling regulates lifespan via the Ras-MAPK pathway and the PLZF transcription factors EOR-1 and EOR-2. As animals enter adulthood, EGF signalling upregulates the expression of genes involved in the ubiquitin proteasome system (UPS), including the Skp1-like protein SKR-5, while downregulating the expression of HSP16-type chaperones. Using reporters for global UPS activity, protein aggregation, and oxidative stress, we find that EGF signalling alters protein homoeostasis in adults by increasing UPS activity and polyubiquitination, while decreasing protein aggregation. We show that SKR-5 and the E3/E4 ligases that comprise the ubiquitin fusion degradation (UFD) complex are required for the increase in UPS activity observed in adults, and that animals that lack SKR-5 or the UFD have reduced lifespans and indications of oxidative stress. We propose that as animals enter fertile adulthood, EGF signalling switches the mechanism for maintaining protein homoeostasis from a chaperone-based approach to an approach involving protein elimination via augmented UPS activity.