A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Gaal, T, Ross W, Blatter EE, Tang H, Jia X, Krishnan VV, Assa-Munt N, Ebright RH, Gourse RL.  1996.  DNA-binding determinants of the alpha subunit of RNA polymerase: novel DNA-binding domain architecture.. Genes & development. 10(1):16-26. Abstract
The Escherichia coli RNA polymerase alpha-subunit binds through its carboxy-terminal domain (alpha CTD) to a recognition element, the upstream (UP) element, in certain promoters. We used genetic and biochemical techniques to identify the residues in alpha CTD important for UP-element-dependent transcription and DNA binding. These residues occur in two regions of alpha CTD, close to but distinct from, residues important for interactions with certain transcription activators. We used NMR spectroscopy to determine the secondary structure of alpha CTD, alpha CTD contains a nonstandard helix followed by four alpha-helices. The two regions of alpha CTD important for DNA binding correspond to the first alpha-helix and the loop between the third and fourth alpha-helices. The alpha CTD DNA-binding domain architecture is unlike any DNA-binding architecture identified to date, and we propose that alpha CTD has a novel mode of interaction with DNA. Our results suggest models for alpha CTD-DNA and alpha CTD-DNA-activator interactions during transcription initiation.
Gailus-Durner, V, Chintamaneni C, Wilson R, Brill SJ, Vershon AK.  1997.  Analysis of a Meiosis-specific uRS1 Site: Sequence Requirements and Involvement of Replication Protein a. Mol Cell Biol. 17:3536-3546. Abstract
URS1 is a transcriptional repressor site found in the promoters of a wide variety of yeast genes that are induced under stress conditions. In the context of meiotic promoters, URS1 sites act as repressor sequences during mitosis and function as activator sites during meiosis. We have investigated the sequence requirements of the URS1 site of the meiosis-specific HOP1 gene (URS1H) and have found differences compared with a URS1 site from a nonmeiotic gene. We have also observed that the sequence specificity for meiotic activation at this site differs from that for mitotic repression. Base pairs flanking the conserved core sequence enhance meiotic induction but are not required for mitotic repression of HOP1. Electrophoretic mobility shift assays of mitotic and meiotic cell extracts show a complex pattern of DNA-protein complexes, suggesting that several different protein factors bind specifically to the site. We have determined that one of the complexes of URS1H is formed by replication protein A (RPA). Although RPA binds to the double-stranded URS1H site in vitro, it has much higher affinity for single-stranded than for double-stranded URS1H, and one-hybrid assays suggest that RPA does not bind to this site at detectable levels in vivo. In addition, conditional-lethal mutations in RPA were found to have no effect on URS1H-mediated repression. These results suggest that although RPA binds to URS1H in vitro, it does not appear to have a functional role in transcriptional repression through this site in vivo.
Gallavotti, A, Yang Y, Schmidt RJ, Jackson D.  2008.  The Relationship Between Auxin Transport and Maize Branching. Plant Physiol. 147:1913-1923. Abstract
Maize (Zea mays) plants make different types of vegetative or reproductive branches during development. Branches develop from axillary meristems produced on the flanks of the vegetative or inflorescence shoot apical meristem. Among these branches are the spikelets, short grass-specific structures, produced by determinate axillary spikelet-pair and spikelet meristems. We investigated the mechanism of branching in maize by making transgenic plants expressing a native expressed endogenous auxin efflux transporter (ZmPIN1a) fused to yellow fluorescent protein and a synthetic auxin-responsive promoter (DR5rev) driving red fluorescent protein. By imaging these plants, we found that all maize branching events during vegetative and reproductive development appear to be regulated by the creation of auxin response maxima through the activity of polar auxin transporters. We also found that the auxin transporter ZmPIN1a is functional, as it can rescue the polar auxin transport defects of the Arabidopsis (Arabidopsis thaliana) pin1-3 mutant. Based on this and on the groundbreaking analysis in Arabidopsis and other species, we conclude that branching mechanisms are conserved and can, in addition, explain the formation of axillary meristems (spikelet-pair and spikelet meristems) that are unique to grasses. We also found that BARREN STALK1 is required for the creation of auxin response maxima at the flanks of the inflorescence meristem, suggesting a role in the initiation of polar auxin transport for axillary meristem formation. Based on our results, we propose a general model for branching during maize inflorescence development.
Gallavotti, A, Malcomber S, Gaines C, Stanfield S, Whipple C, Kellogg E, Schmidt RJ.  2011.  BARREN STALK FASTIGIATE1 is an AT-hook Protein Required for the Formation of Maize ears. Plant Cell. 23:1756-1771. AbstractWebsite
Ears are the seed-bearing inflorescences of maize (Zea mays) plants and represent a crucial component of maize yield. The first step in the formation of ears is the initiation of axillary meristems in the axils of developing leaves. In the classic maize mutant barren stalk fastigiate1 (baf1), first discovered in the 1950s, ears either do not form or, if they do, are partially fused to the main stalk. We positionally cloned Baf1 and found that it encodes a transcriptional regulator containing an AT-hook DNA binding motif. Single coorthologs of Baf1 are found in syntenic regions of brachypodium (Brachypodium distachyon), rice (Oryza sativa), and sorghum (Sorghum bicolor), suggesting that the gene is likely present in all cereal species. Protein-protein interaction assays suggest that BAF1 is capable of forming homodimers and heterodimers with other members of the AT-hook family. Another transcriptional regulator required for ear initiation is the basic helix-loop-helix protein BARREN STALK1 (BA1). Genetic and expression analyses suggest that Baf1 is required to reach a threshold level of Ba1 expression for the initiation of maize ears. We propose that Baf1 functions in the demarcation of a boundary region essential for the specification of a stem cell niche.
Gallavotti, A.  2013.  The role of auxin in shaping shoot architecture. Journal of Experimental Botany. 64(9):2593-2608. AbstractWebsite
The variety of plant architectures observed in nature is predominantly determined by vegetative and reproductive branching patterns, the positioning of lateral organs, and differential stem elongation. Branches, lateral organs, and stems are the final products of the activity of meristems, groups of stem cells whose function is genetically deter- mined and environmentally influenced. Several decades of studies in different plant species have shed light on the essential role of the hormone auxin in plant growth and development. Auxin influences stem elongation and regulates the formation, activity, and fate of meristems, and has therefore been recognized as a major hormone shaping plant architecture. Increasing our knowledge of the molecular mechanisms that regulate auxin function is necessary to understand how different plant species integrate a genetically determined developmental programme, the establish- ment of a body plan, with constant inputs from the surrounding environment. This information will allow us to develop the molecular tools needed to modify plant architecture in several crop species and in rapidly changing environments.
Gallavotti, A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt RJ, McSteen P.  2008.  Sparse Inflorescence1 Encodes a Monocot-specific YUCCA-like gene Required for Vegetative and Reproductive Development in Maize. Proc Natl Acad Sci U S A. 105:15196-15201. Abstract
The plant growth hormone auxin plays a critical role in the initiation of lateral organs and meristems. Here, we identify and characterize a mutant, sparse inflorescence1 (spi1), which has defects in the initiation of axillary meristems and lateral organs during vegetative and inflorescence development in maize. Positional cloning shows that spi1 encodes a flavin monooxygenase similar to the YUCCA (YUC) genes of Arabidopsis, which are involved in local auxin biosynthesis in various plant tissues. In Arabidopsis, loss of function of single members of the YUC family has no obvious effect, but in maize the mutation of a single yuc locus causes severe developmental defects. Phylogenetic analysis of the different members of the YUC family in moss, monocot, and eudicot species shows that there have been independent expansions of the family in monocots and eudicots. spi1 belongs to a monocot-specific clade, within which the role of individual YUC genes has diversified. These observations, together with expression and functional data, suggest that spi1 has evolved a dominant role in auxin biosynthesis that is essential for normal maize inflorescence development. Analysis of the interaction between spi1 and genes regulating auxin transport indicate that auxin transport and biosynthesis function synergistically to regulate the formation of axillary meristems and lateral organs in maize.
Gallavotti, A, Long JA, Stanfield S, Yang X, Jackson D, Vollbrecht E, Schmidt RJ.  2010.  The Control of Axillary Meristem fate in the Maize Ramosa Pathway. Development. 137:2849-2856. AbstractWebsite
Plant axillary meristems are composed of highly organized, self-renewing stem cells that produce indeterminate branches or terminate in differentiated structures, such as the flowers. These opposite fates, dictated by both genetic and environmental factors, determine interspecific differences in the architecture of plants. The Cys(2)-His(2) zinc-finger transcription factor RAMOSA1 (RA1) regulates the fate of most axillary meristems during the early development of maize inflorescences, the tassel and the ear, and has been implicated in the evolution of grass architecture. Mutations in RA1 or any other known members of the ramosa pathway, RAMOSA2 and RAMOSA3, generate highly branched inflorescences. Here, we report a genetic screen for the enhancement of maize inflorescence branching and the discovery of a new regulator of meristem fate: the RAMOSA1 ENHANCER LOCUS2 (REL2) gene. rel2 mutants dramatically increase the formation of long branches in ears of both ra1 and ra2 mutants. REL2 encodes a transcriptional co-repressor similar to the TOPLESS protein of Arabidopsis, which is known to maintain apical-basal polarity during embryogenesis. REL2 is capable of rescuing the embryonic defects of the Arabidopsis topless-1 mutant, suggesting that REL2 also functions as a transcriptional co-repressor throughout development. We show by genetic and molecular analyses that REL2 physically interacts with RA1, indicating that the REL2/RA1 transcriptional repressor complex antagonizes the formation of indeterminate branches during maize inflorescence development. Our results reveal a novel mechanism for the control of meristem fate and the architecture of plants.
Gallavotti, A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pè EM, Schmidt RJ.  2004.  The role of Barren Stalk1 in the Architecture of Maize. Nature. 432:630-635. Abstract
The architecture of higher plants is established through the activity of lateral meristems–small groups of stem cells formed during vegetative and reproductive development. Lateral meristems generate branches and inflorescence structures, which define the overall form of a plant, and are largely responsible for the evolution of different plant architectures. Here, we report the isolation of the barren stalk1 gene, which encodes a non-canonical basic helix-loop-helix protein required for the initiation of all aerial lateral meristems in maize. barren stalk1 represents one of the earliest genes involved in the patterning of maize inflorescences, and, together with the teosinte branched1 gene, it regulates vegetative lateral meristem development. The architecture of maize has been a major target of selection for early agriculturalists and modern farmers, because it influences harvesting, breeding strategies and mechanization. By sampling nucleotide diversity in the barren stalk1 region, we show that two haplotypes entered the maize gene pool from its wild progenitor, teosinte, and that only one was incorporated throughout modern inbreds, suggesting that barren stalk1 was selected for agronomic purposes.
Gallavotti, A, Schmidt RJ.  2007.  Two sides of the same coin. Nat Genet. 39:1425-1426.
Gallavotti, A. and Whipple, CJ.  2015.  Positional cloning in maize (Zea mays subsp. mays, Poaceae). Applications in Plant Sciences. 3:1400092.Website
Galli, M, Liu Q, Moss BL, Malcomber S, Li W, Gaines C, Federici S, Roshkovan J, Meeley R, Nemhauser J et al..  2015.  Auxin signaling modules regulate maize inflorescence architecture. Proc Natl Acad Sci USA. 112:13372-13377. AbstractWebsite
In plants, small groups of pluripotent stem cells called axillary meristems are required for the formation of the branches and flowers that eventually establish shoot architecture and drive reproductive success. To ensure the proper formation of new axillary meristems, the specification of boundary regions is required for coordinating their development. We have identified two maize genes, BARREN INFLORESCENCE1 and BARREN INFLORESCENCE4 (BIF1 and BIF4), that regulate the early steps required for inflorescence formation. BIF1 and BIF4 encode AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins, which are key components of the auxin hormone signaling pathway that is essential for organogenesis. Here we show that BIF1 and BIF4 are integral to auxin signaling modules that dynamically regulate the expression of BARREN STALK1 (BA1), a basic helix-loop-helix (bHLH) transcriptional regulator necessary for axillary meristem formation that shows a striking boundary expression pattern. These findings suggest that auxin signaling directly controls boundary domains during axillary meristem formation and define a fundamental mechanism that regulates inflorescence architecture in one of the most widely grown crop species.
Galli, M and Gallavotti, A.  2016.  Expanding the regulatory network for meristem size in plants. Trends in Genetics. 32(6):372-383. AbstractWebsite
The remarkable plasticity of post-embryonic plant development is due to groups of stem-cell-containing structures called meristems. In the shoot, meristems continuously produce organs such as leaves, flowers, and stems. Nearly two decades ago the WUSCHEL/CLAVATA (WUS/CLV) negative feedback loop was established as being essential for regulating the size of shoot meristems by maintaining a delicate balance between stem cell proliferation and cell recruitment for the differentiation of lateral primordia. Recent research in various model species (Arabidopsis, tomato, maize, and rice) has led to discoveries of additional components that further refine and improve the current model of meristem regu- lation, adding new complexity to a vital network for plant growth and productivity.
Garcia, N, Zhang W, Wu Y, Messing J.  2015.  Evolution of gene expression after gene amplification.. Genome biology and evolution. 7(5):1303-12. AbstractWebsite
We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat-maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators.
Garcia, N, Li Y, Dooner HK, Messing J.  2017.  Maize defective kernel mutant generated by insertion of a Ds element in a gene encoding a highly conserved TTI2 cochaperone. Proceedings of the National Academy of Sciences of the United States of America. 114(20):5165-5170. Abstract
We have used the newly engineered transposable element Dsg to tag a gene that gives rise to a defective kernel (dek) phenotype. Dsg requires the autonomous element Ac for transposition. Upon excision, it leaves a short DNA footprint that can create in-frame and frameshift insertions in coding sequences. Therefore, we could create alleles of the tagged gene that confirmed causation of the dek phenotype by the Dsg insertion. The mutation, designated dek38-Dsg, is embryonic lethal, has a defective basal endosperm transfer (BETL) layer, and results in a smaller seed with highly underdeveloped endosperm. The maize dek38 gene encodes a TTI2 (Tel2-interacting protein 2) molecular cochaperone. In yeast and mammals, TTI2 associates with two other cochaperones, TEL2 (Telomere maintenance 2) and TTI1 (Tel2-interacting protein 1), to form the triple T complex that regulates DNA damage response. Therefore, we cloned the maize Tel2 and Tti1 homologs and showed that TEL2 can interact with both TTI1 and TTI2 in yeast two-hybrid assays. The three proteins regulate the cellular levels of phosphatidylinositol 3-kinase-related kinases (PIKKs) and localize to the cytoplasm and the nucleus, consistent with known subcellular locations of PIKKs. dek38-Dsg displays reduced pollen transmission, indicating TTI2's importance in male reproductive cell development.
Garcia, N, Messing J.  2017.  TTT and PIKK Complex Genes Reverted to Single Copy Following Polyploidization and Retain Function Despite Massive Retrotransposition in Maize. Frontiers in plant science. 8:1723. Abstract
The TEL2, TTI1, and TTI2 proteins are co-chaperones for heat shock protein 90 (HSP90) to regulate the protein folding and maturation of phosphatidylinositol 3-kinase-related kinases (PIKKs). Referred to as the TTT complex, the genes that encode them are highly conserved from man to maize. TTT complex and PIKK genes exist mostly as single copy genes in organisms where they have been characterized. Members of this interacting protein network in maize were identified and synteny analyses were performed to study their evolution. Similar to other species, there is only one copy of each of these genes in maize which was due to a loss of the duplicated copy created by ancient allotetraploidy. Moreover, the retained copies of the TTT complex and the PIKK genes tolerated extensive retrotransposon insertion in their introns that resulted in increased gene lengths and gene body methylation, without apparent effect in normal gene expression and function. The results raise an interesting question on whether the reversion to single copy was due to selection against deleterious unbalanced gene duplications between members of the complex as predicted by the gene balance hypothesis, or due to neutral loss of extra copies. Uneven alteration of dosage either by adding extra copies or modulating gene expression of complex members is being proposed as a means to investigate whether the data supports the gene balance hypothesis or not.
Gardner, RC, Howarth AJ, Hahn P, Brown-Luedi M, Shepherd RJ, Messing J.  1981.  The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing. Nucleic acids research. 9:2871-88. AbstractWebsite
We have determined the complete primary structure (8031 base pairs) of an infectious clone of cauliflower mosaic virus strain CM1841. The sequence was obtained using the strategy of cloning shotgun restriction fragments in the sequencing vector M13mp7. Comparison of the CM1841 sequence with that published for another caMV strain (Strasbourg) reveals 4.4% changes, mostly nucleotide substitutions with a few small insertions and deletions. The six open reading frames in the sequence of the Strasbourg isolate are also present in CM1841.
Gardner, GP, Go Y B, Robinson DM, Smith PF, Hadermann J, Abakumov A, Greenblatt M, Dismukes CG.  2012.  Structural requirements in lithium cobalt oxides for the catalytic oxidation of water.. Angewandte Chemie (International ed. in English). 51(7):1616-9.
Gardner, G, Al-Sharab J, Danilovic N, Go Y B, Ayers KE, Greenblatt M, Dismukes G C.  2015.  Structural Basis for Differing Electrocatalytic Water Oxidation by the Cubic, Layered and Spinel Forms of Lithium Cobalt Oxides. Energy Environ. Sci.. :-. AbstractWebsite
The two polymorphs of lithium cobalt oxide, LiCoO2, present an opportunity to contrast the structural requirements for reversible charge storage (battery function) vs catalysis of water oxidation/oxygen evolution (OER; 2H2O[rightward arrow]O2 + 4H+ + 4e- ). Previously, we reported high OER electrocatalytic activity from nanocrystals of the cubic phase vs. poor activity from the layered phase - the archetypal lithium-ion battery cathode. Here we apply transmission electron microscopy, electron diffraction, voltammetry and elemental analysis under OER electrolysis condition to show that labile Li+ ions (de)intercalate from layered LiCoO2, initiating structural reorganization to the cubic spinel LiCo2O4, in parallel with formation of an active catalytic phase. Comparison of cubic LiCoO2 (50nm) to iridium (5 nm) nanoparticles for OER catalysis (commercial benchmark) in basic and neutral electrolyte reveals excellent performance in terms of Tafel slope (48 mV dec-1), overpotential ([small eta] =  420 mV @ 10 mA cm-2 at pH = 14), Faradic yield (100%) and OER stability (no loss in 14 hours). The inherent OER activity of cubic LiCoO2 and spinel LiCo2O4 is attributable to their [Co4O4]n+ cubane structural units, which provides lower oxidation potential to Co4+ and lower inter-cubane hole mobility. By contrast, the layered phase which lacks cubanes exhibits extensive intra-planar hole delocalization which entropically disfavors the four electron/hole concerted OER reaction.
Garner, AL, Rammohan J, Huynh JP, Onder LM, Chen J, Bae B, Jensen D, Weiss LA, Manzano AR, Darst SA et al..  2017.  Effects of Increasing the Affinity of CarD for RNA Polymerase on Mycobacterium tuberculosis Growth, rRNA Transcription, and Virulence. Journal of Bacteriology. 199:e00698-16..
Gates, C, Ananyev GM, Dismukes C.  2016.  The strontium inorganic mutant of the water oxidizing center (CaMn4O5) of PSII improves WOC efficiency but slows electron flux through the terminal acceptors.. Biochim Biophys Acta.. 1857(9):1550-1560. Abstract
Herein we extend prior studies of biosynthetic strontium replacement of calcium in PSII-WOC core particles to characterize whole cells. Previous studies of Thermosynechococcus elongatus found a lower rate of light-saturated O2 from isolated PSII-WOC(Sr) cores and 5–8 × slower rate of oxygen release. We find similar properties in whole cells, and show it is due to a 20% larger Arrhenius activation barrier for O2 evolution. Cellular adaptation to the sluggish PSII-WOC(Sr) cycle occurs in which flux through the QAQB acceptor gate becomes limiting for turnover rate in vivo. Benzoquinone derivatives that bind to QB site remove this kinetic chokepoint yielding 31% greater O2 quantum yield (QY) of PSII-WOC(Sr) vs. PSII-WOC(Ca). QY and efficiency of the WOC(Sr) catalytic cycle are greatly improved at low light flux, due to fewer misses and backward transitions and 3-fold longer lifetime of the unstable S3 state, attributed to greater thermodynamic stabilization of the WOC(Sr) relative to the photoactive tyrosine YZ. More linear and less cyclic electron flow through PSII occurs per PSII-WOC(Sr). The organismal response to the more active PSII centers in Sr-grown cells at 45 °C is to lower the number of active PSII-WOC per Chl, producing comparable oxygen and energy per cell. We conclude that redox and protonic energy fluxes created by PSII are primary determinants for optimal growth rate of T. elongatus. We further conclude that the (Sr-favored) intermediate-spin S = 5/2 form of the S2 state is the active form in the catalytic cycle relative to the low-spin S = 1/2 form.
Ge, Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu M-C, Luo X, Ruan H, García-Valencia LE, Zhong S et al..  2017.  <em>Arabidopsis</em> pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science. 358(6370):1596. AbstractWebsite
In plants, sperm cells travel through the pollen tube as it grows toward the ovule. Successful fertilization depends on the pollen tube rupturing to release the sperm cells (see the Perspective by Stegmann and Zipfel). Ge et al. and Mecchia et al. elucidated the intercellular cross-talk that maintains pollen tube integrity during growth but destroys it at just the right moment. The signaling peptides RALF4 and RALF19, derived from the pollen tube, maintain its integrity as it grows. Once in reach of the ovule, a related signaling peptide, RALF34, which derives from female tissues, takes over and causes rupture of the pollen tube.Science, this issue p. 1596, p. 1600; see also p. 1544In flowering plants, fertilization requires complex cell-to-cell communication events between the pollen tube and the female reproductive tissues, which are controlled by extracellular signaling molecules interacting with receptors at the pollen tube surface. We found that two such receptors in Arabidopsis, BUPS1 and BUPS2, and their peptide ligands, RALF4 and RALF19, are pollen tube–expressed and are required to maintain pollen tube integrity. BUPS1 and BUPS2 interact with receptors ANXUR1 and ANXUR2 via their ectodomains, and both sets of receptors bind RALF4 and RALF19. These receptor-ligand interactions are in competition with the female-derived ligand RALF34, which induces pollen tube bursting at nanomolar concentrations. We propose that RALF34 replaces RALF4 and RALF19 at the interface of pollen tube–female gametophyte contact, thereby deregulating BUPS-ANXUR signaling and in turn leading to pollen tube rupture and sperm release.
Geldziler, BD, Marcello MR, Shakes DC, Singson A.  2011.  The genetics and cell biology of fertilization. Methods Cell Biol.. 106:343–375. Abstract
Although the general events surrounding fertilization in many species are well described, the molecular underpinnings of fertilization are still poorly understood. Caenorhabditis elegans has emerged as a powerful model system for addressing the molecular and cell biological mechanism of fertilization. A primary advantage is the ability to isolate and propagate mutants that effect gametes and no other cells. This chapter provides conceptual guidelines for the identification, maintenance, and experimental approaches for the study fertility mutants.
Gelfand, B, Mead J, Bruning A, Apostolopoulos N, Tadigotla V, Nagaraj V, Sengupta AM, Vershon AK.  2011.  Regulated Antisense Transcription Controls Expression of Cell-type-specific Genes in Yeast. Mol Cell Biol. 31:1701-1709. Abstract
Transcriptome profiling studies have recently uncovered a large number of noncoding RNA transcripts (ncRNAs) in eukaryotic organisms, and there is growing interest in their role in the cell. For example, in haploid Saccharomyces cerevisiae cells, the expression of an overlapping antisense ncRNA, referred to here as RME2 (Regulator of Meiosis 2), prevents IME4 expression. In diploid cells, the a1-α2 complex represses the transcription of RME2, allowing IME4 to be induced during meiosis. In this study we show that antisense transcription across the IME4 promoter region does not block transcription factors from binding and is not required for repression. Mutational analyses found that sequences within the IME4 open reading frame (ORF) are required for the repression mediated by RME2 transcription. These results support a model where transcription of RME2 blocks the elongation of the full-length IME4 transcript but not its initiation. We have found that another antisense transcript, called RME3, represses ZIP2 in a cell-type-specific manner. These results suggest that regulated antisense transcription may be a widespread mechanism for the control of gene expression and may account for the roles of some of the previously uncharacterized ncRNAs in yeast.
Geraghty, DE, Messing J, Rubenstein I.  1982.  Sequence analysis and comparison of cDNAs of the zein multigene family. The EMBO journal. 1:1329-35. AbstractWebsite
The nucleotide sequence of two zein cDNAs in hybrid plasmids A20 and B49 have been determined. The insert in A20 is 921 bp long including a 5' non-coding region of 60 nucleotides, preceded by what is believed to be an artifactual sequence of 41 nucleotides, and a 3' non-coding region of 87 nucleotides. The B49 insert is 467 bp long and includes approximately one-half the protein coding sequence as well as a 3' non-coding region of 97 nucleotides. These sequences have been compared with the previously published sequence of another zein clone, A30 . A20 and A30 , both encoding 19 000 mol. wt. zeins , have approximately 85% homology at the nucleotide level. The B49 sequence, corresponding to a 22 000 mol. wt. zein, has approximately 65% homology to either A20 or A30 . All three zeins share common features including nearly identical amino acid compositions. In addition, the tandem repeats of 20 amino acids first seen in A30 are also present in A20 and B49 .
Geraghty, D, Peifer MA, Rubenstein I, Messing J.  1981.  The primary structure of a plant storage protein: zein. Nucleic acids research. 9:5163-74. AbstractWebsite
The protein sequence of a representative of the zeins, the major storage proteins of maize, has been derived from the nucleotide sequence of a zein cDNA clone. This cDNA was sequence both by the Maxam and Gilbert and the M13-dideoxy techniques. The nucleotide sequence encompasses the non-translated 3' terminus of the mRNA, the entire coding sequence specifying both the mature zein protein and a small signal peptide, and a portion of the non-translated 5' region. The deduced amino acid composition and the amino-terminal amino acid sequence closely resemble those derived from chemical analysis of the zein protein fraction. The data presented represent the first complete amino acid sequence of a plant storage protein.