Export 29 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Li, Y, Harris L, Dooner HK.  2013.  TED, an autonomous and rare maize transposon of the mutator superfamily with a high gametophytic excision frequency.. The Plant cell. 25(9):3251-65. Abstract
Mutator (Mu) elements, one of the most diverse superfamilies of DNA transposons, are found in all eukaryotic kingdoms, but are particularly numerous in plants. Most of the present knowledge on the transposition behavior of this superfamily comes from studies of the maize (Zea mays) Mu elements, whose transposition is mediated by the autonomous Mutator-Don Robertson (MuDR) element. Here, we describe the maize element TED (for Transposon Ellen Dempsey), an autonomous cousin that differs significantly from MuDR. Element excision and reinsertion appear to require both proteins encoded by MuDR, but only the single protein encoded by TED. Germinal excisions, rare with MuDR, are common with TED, but arise in one of the mitotic divisions of the gametophyte, rather than at meiosis. Instead, transposition-deficient elements arise at meiosis, suggesting that the double-strand breaks produced by element excision are repaired differently in mitosis and meiosis. Unlike MuDR, TED is a very low-copy transposon whose number and activity do not undergo dramatic changes upon inbreeding or outcrossing. Like MuDR, TED transposes mostly to unlinked sites and can form circular transposition products. Sequences closer to TED than to MuDR were detected only in the grasses, suggesting a rather recent evolutionary split from a common ancestor.
Dooner, HK, Weil CF.  2013.  Transposons and gene creation. Molecular Genetics and Epigenetics of Plant Transposons. :143-167.
Hawkins, JS, Delgado V, Feng L, Carlise M, Dooner HK, Bennetzen JL.  2014.  Variation in allelic expression associated with a recombination hotspot in Zea mays.. The Plant Journal, DOI: 10.1111/tpj.12537. Abstract
Gene expression is a complex process, requiring precise spatial and temporal regulation of transcription factor activity; however, modifications of individual cis- and trans-acting modules can be molded by natural selection to create a sizeable number of novel phenotypes. Results from decades of research indicate that developmental and phenotypic divergence among eukaryotic organisms is driven primarily by variation in levels of gene expression that are dictated by mutations either in structural or regulatory regions of genes. The relative contributions and interplay of cis- and trans-acting regulatory factors to this evolutionary process, however, remain poorly understood. Analysis of 8 genes in the Bz1-Sh1 interval of maize indicates significant allele-specific expression biases in at least one tissue for all genes, ranging from 1.3-fold to 36-fold. All detected effects were cis-regulatory in nature, although genetic background may also influence the level of expression bias and tissue specificity for some allelic combinations. Most allelic pairs exhibited the same direction and approximate intensity of bias across all four tissues; however, a subset of allelic pairs show alternating dominance across different tissue types or variation in the degree of bias in different tissues. In addition, the genes showing the most striking levels of allelic bias co-localize with a previously described recombination hotspot in this region, suggesting a naturally occurring genetic mechanism for creating regulatory variability for a subset of plant genes that may ultimately lead to evolutionary diversification.
Smith, PF, Hunt L, Laursen AB, Sagar V, Kaushik S, Calvinho KU, Marotta G, Mosconi E, De Angelis F, Dismukes GC.  2015.  Water Oxidation by the [Co4O4(OAc)4(py)4](+) Cubium is Initiated by OH(-) Addition.. J Am Chem Soc. 137(49):15460-15468. Abstract
The cobalt cubium Co4O4(OAc)4(py)4(ClO4) (1A(+)) containing the mixed valence [Co4O4](5+) core is shown by multiple spectroscopic methods to react with hydroxide (OH(-)) but not with water molecules to produce O2. The yield of reaction products is stoichiometric (>99.5%): 41A(+) + 4OH(-) → O2 + 2H2O + 41A. By contrast, the structurally homologous cubium Co4O4(trans-OAc)2(bpy)4(ClO4)3, 1B(ClO4)3, produces no O2. EPR/NMR spectroscopies show clean conversion to cubane 1A during O2 evolution with no Co(2+) or Co3O4 side products. Mass spectrometry of the reaction between isotopically labeled μ-(16)O(bridging-oxo) 1A(+) and (18)O-bicarbonate/water shows (1) no exchange of (18)O into the bridging oxos of 1A(+), and (2) (36)O2 is the major product, thus requiring two OH(-) in the reactive intermediate. DFT calculations of solvated intermediates suggest that addition of two OH(-) to 1A(+) via OH(-) insertion into Co-OAc bonds is energetically favored, followed by outer-sphere oxidation to intermediate [1A(OH)2](0). The absence of O2 production by cubium 1B(3+) indicates the reactive intermediate derived from 1A(+) requires gem-1,1-dihydoxo stereochemistry to perform O-O bond formation. Outer-sphere oxidation of this intermediate by 2 equiv of 1A(+) accounts for the final stoichiometry. Collectively, these results and recent literature (Faraday Discuss., doi:10.1039/C5FD00076A and J. Am. Chem. Soc. 2015, 137, 12865-12872) validate the [Co4O4](4+/5+) cubane core as an intrinsic catalyst for oxidation of hydroxide by an inner-sphere mechanism.