Publications

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Margeat, E, Kapanidis AN, Tinnefeld P, Wang Y, Mukhopadhyay J, Ebright RH, Weiss S.  2006.  Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes.. Biophysical journal. 90(4):1419-31. Abstract
Using total-internal-reflection fluorescence microscopy equipped with alternating-laser excitation, we were able to detect abortive initiation and promoter escape within single immobilized transcription complexes. Our approach uses fluorescence resonance energy transfer to monitor distances between a fluorescent probe incorporated in RNA polymerase (RNAP) and a fluorescent probe incorporated in DNA. We observe small, but reproducible and abortive-product-length-dependent, decreases in distance between the RNAP leading edge and DNA downstream of RNAP upon abortive initiation, and we observe large decreases in distance upon promoter escape. Inspection of population distributions and single-molecule time traces for abortive initiation indicates that, at a consensus promoter, at saturating ribonucleoside triphosphate concentrations, abortive-product release is rate-limiting (i.e., abortive-product synthesis and RNAP-active-center forward translocation are fast, whereas abortive-product dissociation and RNAP-active-center reverse translocation are slow). The results obtained using this new methodology confirm and extend those obtained from diffusing single molecules, and pave the way for real-time, single-molecule observations of the transitions between various states of the transcription complex throughout transcription.
Calvino, M., Messing J.  2013.  Discovery of MicroRNA169 gene copies in genomes of flowering plants through positional information. Genome Biol Evol. 5:402-17. AbstractWebsite
Expansion and contraction of microRNA (miRNA) families can be studied in sequenced plant genomes through sequence alignments. Here, we focused on miR169 in sorghum because of its implications in drought tolerance and stem-sugar content. We were able to discover many miR169 copies that have escaped standard genome annotation methods. A new miR169 cluster was found on sorghum chromosome 1. This cluster is composed of the previously annotated sbi-MIR169o together with two newly found MIR169 copies, named sbi-MIR169t and sbi-MIR169u. We also found that a miR169 cluster on sorghum chr7 consisting of sbi-MIR169l, sbi-MIR169m, and sbi-MIR169n is contained within a chromosomal inversion of at least 500 kb that occurred in sorghum relative to Brachypodium, rice, foxtail millet, and maize. Surprisingly, synteny of chromosomal segments containing MIR169 copies with linked bHLH and CONSTANS-LIKE genes extended from Brachypodium to dictotyledonous species such as grapevine, soybean, and cassava, indicating a strong conservation of linkages of certain flowering and/or plant height genes and microRNAs, which may explain linkage drag of drought and flowering traits and would have consequences for breeding new varieties. Furthermore, alignment of rice and sorghum orthologous regions revealed the presence of two additional miR169 gene copies (miR169r and miR169s) on sorghum chr7 that formed an antisense miRNA gene pair. Both copies are expressed and target different set of genes. Synteny-based analysis of microRNAs among different plant species should lead to the discovery of new microRNAs in general and contribute to our understanding of their evolution.
Rongo, C.  2001.  Disparate cell types use a shared complex of PDZ proteins for polarized protein localization. Cytokine Growth Factor Rev. 12:349-59. AbstractWebsite
Based on their morphology and function, epithelial cells and neurons appear to have very little in common; however, growing evidence indicates that these two disparate cell types share an underlying polarization pathway responsible for sorting proteins to specific subcellular sites. An evolutionarily conserved complex of PDZ domain-containing proteins thought to be responsible for polarized protein localization has been identified from both brain and epithelial tissue, both from mammals and from the nematode C. elegans. Some of the most recent data on PDZ proteins and the proteins with which they interact are summarized. In particular, some of the more recently proposed models for their function in cells, and the in vivo and in vitro data that support these models are focussed upon.
Knight, JL, Mekler V, Mukhopadhyay J, Ebright RH, Levy RM.  2005.  Distance-restrained docking of rifampicin and rifamycin SV to RNA polymerase using systematic FRET measurements: developing benchmarks of model quality and reliability.. Biophysical journal. 88(2):925-38. Abstract
We are developing distance-restrained docking strategies for modeling macromolecular complexes that combine available high-resolution structures of the components and intercomponent distance restraints derived from systematic fluorescence resonance energy transfer (FRET) measurements. In this article, we consider the problem of docking small-molecule ligands within macromolecular complexes. Using simulated FRET data, we have generated a series of benchmarks that permit estimation of model accuracy based on the quantity and quality of FRET-derived distance restraints, including the number, random error, systematic error, distance distribution, and radial distribution of FRET-derived distance restraints. We find that expected model accuracy is 10 A or better for models based on: i), > or =20 restraints with up to 15% random error and no systematic error, or ii), > or =20 restraints with up to 15% random error, up to 10% systematic error, and a symmetric radial distribution of restraints. Model accuracies can be improved to 5 A or better by increasing the number of restraints to > or =40 and/or by optimizing the distance distribution of restraints. Using experimental FRET data, we have defined the positions of the binding sites within bacterial RNA polymerase of the small-molecule inhibitors rifampicin (Rif) and rifamycin SV (Rif SV). The inferred binding sites for Rif and Rif SV were located with accuracies of, respectively, 7 and 10 A relative to the crystallographically defined binding site for Rif. These accuracies agree with expectations from the benchmark simulations and suffice to indicate that the binding sites for Rif and Rif SV are located within the RNA polymerase active-center cleft, overlapping the binding site for the RNA-DNA hybrid.
Stolz, A, Haines N, Pich A, Irvine KD, Hokke CH, Deelder AM, Gerardy-Schahn R, Wuhrer M, Bakker H.  2008.  Distinct contributions of beta 4GalNAcTA and beta 4GalNAcTB to Drosophila glycosphingolipid biosynthesis. Glycoconjugate Journal. 25:167-75. AbstractWebsite
Drosophila melanogaster has two beta4-N-acetylgalactosaminyltransferases, beta4GalNAcTA and beta4GalNAcTB, that are able to catalyse the formation of lacdiNAc (GalNAcbeta,4GlcNAc). LacdiNAc is found as a structural element of Drosophila glycosphingolipids (GSLs) suggesting that beta4GalNAcTs contribute to the generation of GSL structures in vivo. Mutations in Egghead and Brainaic, enzymes that generate the beta4GalNAcT trisaccharide acceptor structure GlcNAcbeta,3Manbeta,4GlcbetaCer, are lethal. In contrast, flies doubly mutant for the beta4GalNAcTs are viable and fertile. Here, we describe the structural analysis of the GSLs in beta4GalNAcT mutants and find that in double mutant flies no lacdiNAc structure is generated and the trisaccharide GlcNAcbeta,3Manbeta,4GlcbetaCer accumulates. We also find that phosphoethanolamine transfer to GlcNAc in the trisaccharide does not occur, demonstrating that this step is dependent on prior or simultaneous transfer of GalNAc. By comparing GSL structures generated in the beta4GalNAcT single mutants we show that beta4GalNAcTB is the major enzyme for the overall GSL biosynthesis in adult flies. In beta4GalNAcTA mutants, composition of GSL structures is indistinguishable from wild-type animals. However, in beta4GalNAcTB mutants precursor structures are accumulating in different steps of GSL biosynthesis, without the complete loss of lacdiNAc, indicating that beta4GalNAcTA plays a minor role in generating GSL structures. Together our results demonstrate that both beta4GalNAcTs are able to generate lacdiNAc structures in Drosophila GSL, although with different contributions in vivo, and that the trisaccharide GlcNAcbeta,3Manbeta,4GlcbetaCer is sufficient to avoid the major phenotypic consequences associated with the GSL biosynthetic defects in Brainiac or Egghead.
Glodowski, DR, Wright T, Martinowich K, Chang HC, Beach D, Rongo C.  2005.  Distinct LIN-10 domains are required for its neuronal function, its epithelial function, and its synaptic localization. Mol Biol Cell. 16:1417-26. AbstractWebsite
alpha-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors (AMPARs) mediate excitatory neurotransmission at neuronal synapses, and their regulated localization plays a role in synaptic plasticity. In Caenorhabditis elegans, the PDZ and PTB domain-containing protein LIN-10 is required both for the synaptic localization of the AMPAR subunit GLR-1 and for vulval fate induction in epithelia. Here, we examine the role that different LIN-10 domains play in GLR-1 localization. We find that an amino-terminal region of LIN-10 directs LIN-10 protein localization to the Golgi and to synaptic clusters. In addition, mutations in the carboxyl-terminal PDZ domains prevent LIN-10 from regulating GLR-1 localization in neurons but do not prevent LIN-10 from functioning in the vulval epithelia. A mutation in the amino terminus prevents the protein from functioning in the vulval epithelia but does not prevent it from functioning to regulate GLR-1 localization in neurons. Finally, we show that human Mint2 can substitute for LIN-10 to facilitate GLR-1 localization in neurons and that the Mint2 amino terminus is critical for this function. Together, our data suggest that LIN-10 uses distinct modular domains for its functions in neurons and epithelial cells and that during evolution its vertebrate ortholog Mint2 has retained the ability to direct AMPAR localization in neurons.
Knobel, KM, Peden EM, Barr MM.  2008.  Distinct Protein Domains Regulate Ciliary Targeting and Function of C. Elegans PKD-2. Exp Cell Res. 314:825-833. Abstract
TRPP2 (transient receptor potential polycystin-2) channels function in a range of cells where they are localized to specific subcellular regions including the endoplasmic reticulum (ER) and primary cilium. In humans, TRPP2/PC-2 mutations severely compromise kidney function and cause autosomal dominant polycystic kidney disease (ADPKD). The Caenorhabditis elegans TRPP2 homolog, PKD-2, is restricted to the somatodendritic (cell body and dendrite) and ciliary compartments of male specific sensory neurons. Within these neurons PKD-2 function is required for sensation. To understand the mechanisms regulating TRPP2 subcellular distribution and activity, we performed in vivo structure-function-localization studies using C. elegans as a model system. Our data demonstrate that somatodendritic and ciliary targeting requires the transmembrane (TM) region of PKD-2 and that the PKD-2 cytosolic termini regulate subcellular distribution and function. Within neuronal cell bodies, PKD-2 colocalizes with the OSM-9 TRP vanilloid (TRPV) channel, suggesting that these TRPP and TRPV channels may function in a common process. When human TRPP2/PC-2 is heterologously expressed in transgenic C. elegans animals, PC-2 does not visibly localize to cilia but does partially rescue pkd-2 null mutant defects, suggesting that human PC-2 and PKD-2 are functional homologs.
Xu, J-H, Messing J.  2008.  Diverged Copies of the Seed Regulatory Opaque-2 Gene by a Segmental Duplication in the Progenitor Genome of Rice, Sorghum, and Maize. Mol Plant %R 10.1093/mp/ssn038. 1:760-769. AbstractWebsite
Comparative analyses of the sequence of entire genomes have shown that gene duplications, chromosomal segmental duplications, or even whole genome duplications (WGD) have played prominent roles in the evolution of many eukaryotic species. Here, we used the ancient duplication of a well known transcription factor in maize, encoded by the Opaque-2 (O2) locus, to examine the general features of divergences of chromosomal segmental duplications in a lineage-specific manner. We took advantage of contiguous chromosomal sequence information in rice (Oryza sativa, Nipponbare), sorghum (Sorghum bicolor, Btx623), and maize (Zea mays, B73) that were aligned by conserved gene order (synteny). This analysis showed that the maize O2 locus is contained within a 1.25 million base-pair (Mb) segment on chromosome 7, which was duplicated {approx}56 million years ago (mya) before the split of rice and maize 50 mya. The duplicated region on chromosome 1 is only half the size and contains the maize OHP gene, which does not restore the o2 mutation although it encodes a protein with the same DNA and protein binding properties in endosperm. The segmental duplication is not only found in rice, but also in sorghum, which split from maize 11.9 mya. A detailed analysis of the duplicated regions provided examples for complex rearrangements including deletions, duplications, conversions, inversions, and translocations. Furthermore, the rice and sorghum genomes appeared to be more stable than the maize genome, probably because maize underwent allotetraploidization and then diploidization.
Goettel, W, Messing J.  2010.  Divergence of gene regulation through chromosomal rearrangements. BMC Genomics. 11:678. AbstractWebsite
BACKGROUND: The molecular mechanisms that modify genome structures to give birth and death to alleles are still not well understood. To investigate the causative chromosomal rearrangements, we took advantage of the allelic diversity of the duplicated p1 and p2 genes in maize. Both genes encode a transcription factor involved in maysin synthesis, which confers resistance to corn earworm. However, p1 also controls accumulation of reddish pigments in floral tissues and has therefore acquired a new function after gene duplication. p1 alleles vary in their tissue-specific expression, which is indicated in their allele designation: the first suffix refers to red or white pericarp pigmentation and the second to red or white glume pigmentation. RESULTS: Comparing chromosomal regions comprising p1-ww[4Co63], P1-rw1077 and P1-rr4B2 alleles with that of the reference genome, P1-wr[B73], enabled us to reconstruct additive events of transposition, chromosome breaks and repairs, and recombination that resulted in phenotypic variation and chimeric regulatory signals. The p1-ww[4Co63] null allele is probably derived from P1-wr[B73] by unequal crossover between large flanking sequences. A transposon insertion in a P1-wr-like allele and NHEJ (non-homologous end-joining) could have resulted in the formation of the P1-rw1077 allele. A second NHEJ event, followed by unequal crossover, probably led to the duplication of an enhancer region, creating the P1-rr4B2 allele. Moreover, a rather dynamic picture emerged in the use of polyadenylation signals by different p1 alleles. Interestingly, p1 alleles can be placed on both sides of a large retrotransposon cluster through recombination, while functional p2 alleles have only been found proximal to the cluster. CONCLUSIONS: Allelic diversity of the p locus exemplifies how gene duplications promote phenotypic variability through composite regulatory signals. Transposition events increase the level of genomic complexity based not only on insertions but also on excisions that cause DNA double-strand breaks and trigger illegitimate recombination.
Zhang, W, Sangtong V, Peterson J, Scott MP, Messing J.  2013.  Divergent properties of prolamins in wheat and maize. Planta. 237:1465-73. AbstractWebsite
Cereal grains are an important nutritional source of amino acids for humans and livestock worldwide. Wheat, barley, and oats belong to a different subfamily of the grasses than rice and in addition to maize, millets, sugarcane, and sorghum. All their seeds, however, are largely devoid of free amino acids because they are stored during dormancy in specialized storage proteins. Prolamins, the major class of storage proteins in cereals with preponderance of proline and glutamine, are synthesized at the endoplasmic reticulum during seed development and deposited into subcellular structures of the immature endosperm, the protein bodies. Prolamins have diverged during the evolution of the grass family in their structure and their properties. Here, we used the expression of wheat glutenin-Dx5 in maize to examine its interaction with maize prolamins during endosperm development. Ectopic expression of Dx5 alters protein body morphology in a way that resembles non-vitreous kernel phenotypes, although Dx5 alone does not cause an opaque phenotype. However, if we lower the amount of gamma-zeins in Dx5 maize through RNAi, a non-vitreous phenotype emerges and the deformation on the surface of protein bodies is enhanced, indicating that Dx5 requires gamma-zeins for its proper subcellular organization in maize.
Firestein, BL, Rongo C.  2001.  DLG-1 is a MAGUK similar to SAP97 and is required for adherens junction formation. Mol Biol Cell. 12:3465-75. AbstractWebsite
Cellular junctions are critical for intercellular communication and for the assembly of cells into tissues. Cell junctions often consist of tight junctions, which form a permeability barrier and prevent the diffusion of lipids and proteins between cell compartments, and adherens junctions, which control the adhesion of cells and link cortical actin filaments to attachment sites on the plasma membrane. Proper tight junction formation and cell polarity require the function of membrane-associated guanylate kinases (MAGUKs) that contain the PDZ protein-protein interaction domain. In contrast, less is known about how adherens junctions are assembled. Here we describe how the PDZ-containing protein DLG-1 is required for the proper formation and function of adherens junctions in Caenorhabditis elegans. DLG-1 is a MAGUK protein that is most similar in sequence to mammalian SAP97, which is found at both synapses of the CNS, as well as at cell junctions of epithelia. DLG-1 is localized to adherens junctions, and DLG-1 localization is mediated by an amino-terminal domain shared with SAP97 but not found in other MAGUK family members. DLG-1 recruits other proteins and signaling molecules to adherens junctions, while embryos that lack DLG-1 fail to recruit the proteins AJM-1 and CPI-1 to adherens junctions. DLG-1 is required for the proper organization of the actin cytoskeleton and for the morphological elongation of embryos. In contrast to other proteins that have been observed to affect adherens junction assembly and function, DLG-1 is not required to maintain cell polarity. Our results suggest a new function for MAGUK proteins distinct from their role in cell polarity.
Shang, Z, Ebright YW, Iler N, Pendergrast PS, Echelard Y, McMahon AP, Ebright RH, Abate C.  1994.  DNA affinity cleaving analysis of homeodomain-DNA interaction: identification of homeodomain consensus sites in genomic DNA.. Proceedings of the National Academy of Sciences of the United States of America. 91(1):118-22. Abstract
We have incorporated the DNA-cleaving moiety o-phenanthroline-copper at amino acid 10 of the Msx-1 homeodomain, and we have analyzed site-specific DNA cleavage by the resulting Msx-1 derivative. We show that amino acid 10 of the Msx-1 homeodomain is close to the 5' end of the consensus DNA site 5'-(C/G)TAATTG-3' in the Msx-1-DNA complex. Our results indicate that the orientation of the Msx-1 homeodomain relative to DNA is analogous to the orientation of the engrailed and Antennapedia homeodomains. We show further that DNA affinity cleaving permits identification of consensus DNA sites for Msx-1 in kilobase DNA substrates. The specificity of the approach enabled us to identify an Msx-1 consensus DNA site within the transcriptional control region of the developmental regulatory gene Wnt-1. We propose that incorporation of o-phenanthroline-copper at amino acid 10 of a homeodomain may provide a generalizable strategy to determine the orientation of a homeodomain relative to DNA and to identify homeodomain consensus DNA sites in genomic DNA.
Wang, W, Wu Y, Yan Y, Ermakova M, Kerstetter R, Messing J.  2010.  DNA barcoding of the Lemnaceae, a family of aquatic monocots. BMC Plant Biol. 10:205. AbstractWebsite
BACKGROUND: Members of the aquatic monocot family Lemnaceae (commonly called duckweeds) represent the smallest and fastest growing flowering plants. Their highly reduced morphology and infrequent flowering result in a dearth of characters for distinguishing between the nearly 38 species that exhibit these tiny, closely-related and often morphologically similar features within the same family of plants. RESULTS: We developed a simple and rapid DNA-based molecular identification system for the Lemnaceae based on sequence polymorphisms. We compared the barcoding potential of the seven plastid-markers proposed by the CBOL (Consortium for the Barcode of Life) plant-working group to discriminate species within the land plants in 97 accessions representing 31 species from the family of Lemnaceae. A Lemnaceae-specific set of PCR and sequencing primers were designed for four plastid coding genes (rpoB, rpoC1, rbcL and matK) and three noncoding spacers (atpF-atpH, psbK-psbI and trnH-psbA) based on the Lemna minor chloroplast genome sequence. We assessed the ease of amplification and sequencing for these markers, examined the extent of the barcoding gap between intra- and inter-specific variation by pairwise distances, evaluated successful identifications based on direct sequence comparison of the "best close match" and the construction of a phylogenetic tree. CONCLUSIONS: Based on its reliable amplification, straightforward sequence alignment, and rates of DNA variation between species and within species, we propose that the atpF-atpH noncoding spacer could serve as a universal DNA barcoding marker for species-level identification of duckweeds.
Wang, W, Wu Y, Ermakova M, Kerstetter R, Messing J.  2010.  DNA barcoding of the Lemnaceae, a family of aquatic monocots. BMC Plant Biology. 10:205.
Dong, Q, Ebright RH.  1992.  DNA binding specificity and sequence of Xanthomonas campestris catabolite gene activator protein-like protein.. Journal of bacteriology. 174(16):5457-61. Abstract
The Xanthomonas campestris catabolite gene activator protein-like protein (CLP) can substitute for the Escherichia coli catabolite gene activator protein (CAP) in transcription activation at the lac promoter (V. de Crecy-Lagard, P. Glaser, P. Lejeune, O. Sismeiro, C. Barber, M. Daniels, and A. Danchin, J. Bacteriol. 172:5877-5883, 1990). We show that CLP has the same DNA binding specificity as CAP at positions 5, 6, and 7 of the DNA half site. In addition, we show that the amino acids at positions 1 and 2 of the recognition helix of CLP are identical to the amino acids at positions 1 and 2 of the recognition helix of CAP:i.e., Arg at position 1 and Glu at position 2.
Azhagiri, AK, Maliga P.  2007.  DNA markers define plastid haplotypes in Arabidopsis thaliana. Current Genetics. 51:269-75. AbstractWebsite
To identify genetic markers in the Arabidopsis thaliana plastid genome (ptDNA), we amplified and sequenced the rpl2-psbA and rbcL-accD regions in 26 ecotypes. The two regions contained eight polymorphic sites including five insertions and/or deletions (indels) involving changes in the length of A or T mononucleotide repeats and three base substitutions. The 27 alleles defined 15 plastid haplotypes, providing a practical set of ptDNA markers for the Columbia, Landsberg erecta and Wassilewskija ecotypes that are commonly used in genetic studies and also for the C24 and RLD ecotypes that are the most amenable for cell culture manipulations.
Gunasekera, A, Ebright YW, Ebright RH.  1992.  DNA sequence determinants for binding of the Escherichia coli catabolite gene activator protein.. The Journal of biological chemistry. 267(21):14713-20. Abstract
The consensus DNA site for binding of the Escherichia coli catabolite gene activator protein (CAP) is 22 base pairs in length and is 2-fold symmetric: 5'-AAATGTGATCTAGATCACATTT-3'. Positions 4 to 8 of each half of the consensus DNA half-site are the most strongly conserved. In this report, we analyze the effects of substitution of DNA base pairs at positions 4 to 8, the effects of substitution of thymine by uracil and by 5-methylcytosine at positions 4, 6, and 8, and the effect of dam methylation of the 5'-GATC-3' sequence at positions 7 to 10. All DNA sites having substitutions of DNA base pairs at positions 4 to 8 exhibit lower affinities for CAP than does the consensus DNA site, consistent with the proposal that the consensus DNA site is the ideal DNA site for CAP. Specificity for T:A at position 4 appears to be determined solely by the thymine 5-methyl group. Specificity for T:A at position 6 and specificity for A:T at position 8 appear to be determined in part, but not solely, by the thymine 5-methyl group. dam methylation has little effect on CAP.DNA complex formation. The thermodynamically defined consensus DNA site spans 28 base pairs. All, or nearly all, DNA determinants required for maximal affinity for CAP and for maximal thermodynamically defined CAP.DNA ion pair formation are contained within a 28-base pair DNA fragment that has the 22-base pair consensus DNA site at its center. The quantitative data in this report provide base-line thermodynamic data required for detailed investigations of amino acid-base pair and amino acid-phosphate contacts in this protein-DNA complex.
Gaal, T, Ross W, Blatter EE, Tang H, Jia X, Krishnan VV, Assa-Munt N, Ebright RH, Gourse RL.  1996.  DNA-binding determinants of the alpha subunit of RNA polymerase: novel DNA-binding domain architecture.. Genes & development. 10(1):16-26. Abstract
The Escherichia coli RNA polymerase alpha-subunit binds through its carboxy-terminal domain (alpha CTD) to a recognition element, the upstream (UP) element, in certain promoters. We used genetic and biochemical techniques to identify the residues in alpha CTD important for UP-element-dependent transcription and DNA binding. These residues occur in two regions of alpha CTD, close to but distinct from, residues important for interactions with certain transcription activators. We used NMR spectroscopy to determine the secondary structure of alpha CTD, alpha CTD contains a nonstandard helix followed by four alpha-helices. The two regions of alpha CTD important for DNA binding correspond to the first alpha-helix and the loop between the third and fourth alpha-helices. The alpha CTD DNA-binding domain architecture is unlike any DNA-binding architecture identified to date, and we propose that alpha CTD has a novel mode of interaction with DNA. Our results suggest models for alpha CTD-DNA and alpha CTD-DNA-activator interactions during transcription initiation.
Acton, TB, Zhong H, Vershon AK.  1997.  DNA-binding Specificity of Mcm1: Operator Mutations that Alter DNA-bending and Transcriptional Activities by a MADs box Protein. Mol Cell Biol. 17:1881-1889. Abstract
The yeast Mcm1 protein is a member of the MADS box family of transcriptional regulatory factors, a class of DNA-binding proteins found in such diverse organisms as yeast, plants, flies, and humans. To explore the protein-DNA interactions of Mcm1 in vivo and in vitro, we have introduced an extensive series of base pair substitutions into an Mcm1 operator site and examined their effects on Mcm1-mediated transcriptional regulation and DNA-binding affinity. Our results show that Mcm1 uses a mechanism to contact the DNA that has some significant differences from the one used by the human serum response factor (SRF), a closely related MADS box protein in which the three-dimensional structure has been determined. One major difference is that 5-bromouracil-mediated photo-cross-linking experiments indicate that Mcm1 is in close proximity to functional groups in the major groove at the center of the recognition site whereas the SRF protein did not exhibit this characteristic. A more significant difference is that mutations at a position outside of the conserved CC(A/T)6GG site significantly reduce Mcm1-dependent DNA bending, while these substitutions have no effect on DNA bending by SRF. This result shows that the DNA bending by Mcm1 is sequence dependent and that the base-specific requirements for bending differ between Mcm1 and SRF. Interestingly, although these substitutions have a large effect on DNA bending and transcriptional activation by Mcm1, they have a relatively small effect on the DNA-binding affinity of the protein. This result suggests that the degree of DNA bending is important for transcriptional activation by Mcm1.
Gunasekera, A, Ebright YW, Ebright RH.  1990.  DNA-sequence recognition by CAP: role of the adenine N6 atom of base pair 6 of the DNA site.. Nucleic acids research. 18(23):6853-6. Abstract
Two similar, but not identical, models have been proposed for the amino acid-base pair contacts in the CAP-DNA complex ('Model I,' Weber, I. and Steitz, T., Proc. Natl. Acad. Sci. USA, 81, 3973-3977, 1984; 'Model II,' Ebright, et al., Proc. Natl. Acad. Sci. USA, 81, 7274-7278, 1984). One difference between the two models involves Glu181 of CAP. Model I predicts that Glu181 of CAP makes two specificity determining contacts: one H-bond with the cytosine N4 atom of G:C at base pair 7 of the DNA half site, and one H-bond with the adenine N6 atom of T:A at base pair 6 of the DNA half site. In contrast, Model II predicts that Glu181 makes only one specificity determining contact: one H-bond with the cytosine N4 atom of G:C at base pair 7 of the DNA half site. In the present work, we show that replacement of T:A at base pair 6 of the DNA half site by T:N6-methyl-adenine has no, or almost no, effect on the binding of CAP. We conclude, contrary to Model I, that Glu181 of CAP makes no contact with the adenine N6 atom of base pair 6 of the DNA half site.
Messing, J.  2017.  Does Investment in Research Always Pay Off? American Academy of Arts and Sciences Bulletin. 70(3):45-47.
Blatter, EE, Ross W, Tang H, Gourse RL, Ebright RH.  1994.  Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding.. Cell. 78(5):889-96. Abstract
Using limited proteolysis, we show that the Escherichia coli RNA polymerase alpha subunit consists of an N-terminal domain comprised of amino acids 8-241, a C-terminal domain comprised of amino acids 249-329, and an unstructured and/or flexible interdomain linker. We have carried out a detailed structural and functional analysis of an 85 amino acid proteolytic fragment corresponding to the C-terminal domain (alpha CTD-2). Our results establish that alpha CTD-2 has a defined secondary structure (approximately 40% alpha helix, approximately 0% beta sheet). Our results further establish that alpha CTD-2 is a dimer and that alpha CTD-2 exhibits sequence-specific DNA binding activity. Our results suggest a model for the mechanism of involvement of alpha in transcription activation by promoter upstream elements and upstream-binding activator proteins.
Joshi, KK, Matlack TL, Rongo C.  2016.  Dopamine signaling promotes the xenobiotic stress response and protein homeostasis.. The EMBO journal. Abstract
Multicellular organisms encounter environmental conditions that adversely affect protein homeostasis (proteostasis), including extreme temperatures, toxins, and pathogens. It is unclear how they use sensory signaling to detect adverse conditions and then activate stress response pathways so as to offset potential damage. Here, we show that dopaminergic mechanosensory neurons in C. elegans release the neurohormone dopamine to promote proteostasis in epithelia. Signaling through the DA receptor DOP-1 activates the expression of xenobiotic stress response genes involved in pathogenic resistance and toxin removal, and these genes are required for the removal of unstable proteins in epithelia. Exposure to a bacterial pathogen (Pseudomonas aeruginosa) results in elevated removal of unstable proteins in epithelia, and this enhancement requires DA signaling. In the absence of DA signaling, nematodes show increased sensitivity to pathogenic bacteria and heat-shock stress. Our results suggest that dopaminergic sensory neurons, in addition to slowing down locomotion upon sensing a potential bacterial feeding source, also signal to frontline epithelia to activate the xenobiotic stress response so as to maintain proteostasis and prepare for possible infection.
Irvine, KD, Vogt TF.  1997.  Dorsal-ventral signaling in limb development. Current Opinion in Cell Biology. 9:867-76. AbstractWebsite
In both Drosophila wings and vertebrate limbs, signaling between dorsal and ventral cells establishes an organizer that promotes limb formation. Significant progress has been made recently towards characterizing the signaling interactions that occur at the dorsal-ventral limb border. Studies of chicks have indicated that, as in Drosophila, this signaling process requires the participation of Fringe. Studies of Drosophila have indicated that Fringe functions by inhibiting the ability of Notch to be activated by one ligand, Serrate, while potentiating the ability of Notch to be activated by another ligand, Delta. Recent studies of both Drosophila and vertebrates have also shed new light on the signaling activity of the dorsal-ventral boundary limb organizer, and have highlighted how this organizer is maintained by feedback mechanisms with neighboring cells.
Papayannopoulos, V, Tomlinson A, Panin VM, Rauskolb C, Irvine KD.  1998.  Dorsal-ventral signaling in the Drosophila eye. Science. 281:2031-4. AbstractWebsite
The development of the Drosophila eye has served as a model system for investigations of tissue patterning and cell-cell communication; however, early eye development has not been well understood. The results presented here indicate that specialized cells are established along the dorsal-ventral midline of the developing eye by Notch-mediated signaling between dorsal and ventral cells, and that Notch activation at the midline plays an essential role both in promoting the growth of the eye primordia and in regulating eye patterning. These observations imply that the developmental homology between Drosophila wings and vertebrate limbs extends to Drosophila eyes.