Zhong, H, Vershon AK.  1997.  The Yeast Homeodomain Protein MATalpha2 Shows Extended DNa Binding Specificity in Complex with Mcm1. J Biol Chem. 272:8402-8409. Abstract
The MATalpha2 (alpha2) repressor interacts with the Mcm1 protein to turn off a-cell type-specific genes in the yeast Saccharomyces cerevisiae. We compared five natural alpha2-Mcm1 sites with an alpha2-Mcm1 symmetric consensus site (AMSC) for their relative strength of repression and found that the AMSC functions slightly better than any of the natural sites. To further investigate the DNA binding specificity of alpha2 in complex with Mcm1, symmetric substitutions at each position in the alpha2 half-sites of AMSC were constructed and assayed for their effect on repression in vivo and DNA binding affinity in vitro. As expected, substitutions at positions in which there are base-specific contacts decrease the level of repression. Interestingly, substitutions at other positions, in which there are no apparent base-specific contacts made by the protein in the alpha2-DNA co-crystal structure, also significantly decrease repression. As an alternative method to examining the DNA binding specificity of alpha2, we performed in vitro alpha2 binding site selection experiments in the presence and absence of Mcm1. In the presence of Mcm1, the consensus sequences obtained were extended and more closely related to the natural alpha2 sites than the consensus sequence obtained in the absence of Mcm1. These results demonstrate that in the presence of Mcm1 the sequence specificity of alpha2 is extended to these positions.
Bradeen, JM, Timmermans MC, Messing J.  1997.  Dynamic genome organization and gene evolution by positive selection in geminivirus (Geminiviridae). Molecular biology and evolution. 14:1114-24. AbstractWebsite
Geminiviruses (Geminiviridae) are a diverse group of plant viruses differing from other known plant viruses in possessing circular, single-stranded DNA. Current classification divides the family into three subgroups, defined in part by genome organization, insect vector, and plant host range. Previous phylogenetic assessments of geminiviruses have used DNA and/or amino acid sequences from the replication-associated and coat protein genes and have relied predominantly on distance analyses. We used amino acid and DNA sequence data from the replication-associated and coat protein genes from 22 geminivirus types in distance and parsimony analyses. Although the results of our analyses largely agree with those reported previously, we could not always predict viral relationships based on genome organization, plant host, or insect vector. Loss of correlation of these traits with phylogeny is likely due to improved sampling of geminivirus types. Unrooted parsimony trees suggest multiple independent origins for the monopartite genome. genome organization is therefore a dynamic character. Estimates of nonsynonymous and synonymous nucleotide substitutions for extant and inferred ancestral sequences were used to evaluate hypotheses that the replication-associated and coat protein sequences evolve to accommodate plant host and insect vector specificities, respectively. Results suggest that plant host specificity does not solely direct replication-associated protein-evolution but that coat protein sequence does evolve in response to insect vector specificity. Genome organization and, possibly, plant host specificity are not reliable taxonomic characters.
Busby, S, Ebright RH.  1997.  Transcription activation at class II CAP-dependent promoters.. Molecular microbiology. 23(5):853-9. Abstract
Transcription activation at Class II CAP-dependent promoters provides a paradigm for understanding how a single activator molecule can make multiple interactions with the transcription machinery, with each interaction being responsible for a specific mechanistic consequence. At Class II CAP-dependent promoters, the DNA target site for CAP is centred near position -42, overlapping and replacing the -35 determinant for binding of RNA polymerase (RNAP). Transcription activation requires two distinct mechanistic components. The first component is 'anti-inhibition,' overcoming an inhibitory effect of the RNAP alpha subunit C-terminal domain (alpha CTD). This component involves direct contact between amino acids 156-164 (activating region 1) of the upstream subunit of the CAP dimer and a target in alpha CTD. The second component is 'direct activation', facilitating isomerization of the RNAP-promoter closed complex to the transcriptionally competent open complex. This component involves direct contact between amino acids 19, 21 and 101 (activating region 2) of the downstream subunit of the CAP dimer and a target in the RNAP alpha subunit N-terminal domain (alpha NTD).
Miller, A, Wood D, Ebright RH, Rothman-Denes LB.  1997.  RNA polymerase beta' subunit: a target of DNA binding-independent activation.. Science (New York, N.Y.). 275(5306):1655-7. Abstract
The bacteriophage N4 single-stranded DNA binding protein (N4SSB) activates transcription by the Escherichia coli final sigma70-RNA polymerase at N4 late promoters. Here it is shown that the single-stranded DNA binding activity of N4SSB is not required for transcriptional activation. N4SSB interacts with the carboxyl terminus of the RNA polymerase beta' subunit in a region that is highly conserved in the largest subunits of prokaryotic and eukaryotic RNA polymerases.
Kim, TK, Lagrange T, Wang YH, Griffith JD, Reinberg D, Ebright RH.  1997.  Trajectory of DNA in the RNA polymerase II transcription preinitiation complex.. Proceedings of the National Academy of Sciences of the United States of America. 94(23):12268-73. Abstract
By using site-specific protein-DNA photocrosslinking, we define the positions of TATA-binding protein, transcription factor IIB, transcription factor IIF, and subunits of RNA polymerase II (RNAPII) relative to promoter DNA within the human transcription preinitiation complex. The results indicate that the interface between the largest and second-largest subunits of RNAPII forms an extended, approximately 240 A channel that interacts with promoter DNA both upstream and downstream of the transcription start. By using electron microscopy, we show that RNAPII compacts promoter DNA by the equivalent of approximately 50 bp. Together with the published structure of RNAPII, the results indicate that RNAPII wraps DNA around its surface and suggest a specific model for the trajectory of the wrapped DNA.
Irvine, KD, Vogt TF.  1997.  Dorsal-ventral signaling in limb development. Current Opinion in Cell Biology. 9:867-76. AbstractWebsite
In both Drosophila wings and vertebrate limbs, signaling between dorsal and ventral cells establishes an organizer that promotes limb formation. Significant progress has been made recently towards characterizing the signaling interactions that occur at the dorsal-ventral limb border. Studies of chicks have indicated that, as in Drosophila, this signaling process requires the participation of Fringe. Studies of Drosophila have indicated that Fringe functions by inhibiting the ability of Notch to be activated by one ligand, Serrate, while potentiating the ability of Notch to be activated by another ligand, Delta. Recent studies of both Drosophila and vertebrates have also shed new light on the signaling activity of the dorsal-ventral boundary limb organizer, and have highlighted how this organizer is maintained by feedback mechanisms with neighboring cells.
Newfeld, SJ, Padgett RW, Findley SD, Richter BG, Sanicola M, de Cuevas M, Gelbart WM.  1997.  Molecular evolution at the decapentaplegic locus in Drosophila. Genetics. 145:297-309. AbstractWebsite
Using an elaborate set of cis-regulatory sequences, the decapentaplegic (dpp) gene displays a dynamic pattern of gene expression during development. The C-terminal portion of the DPP protein is processed to generate a secreted signaling molecule belonging to the transforming growth factor-beta (TGF-beta) family. This signal, the DPP ligand, is able to influence the developmental fates of responsive cells in a concentration-dependent fashion. Here we examine the sequence level organization of a significant portion of the dpp locus in Drosophila melanogaster and use interspecific comparisons with D. simulans, D. pseudoobscura and D.virilis to explore the molecular evolution of the gene. Our interspecific analysis identified significant selective constraint on both the nucleotide and amino acid sequences. As expected, interspecific comparison of protein coding sequences shows that the C-terminal ligand region is highly conserved. However, the central portion of the protein is also conserved, while the N-terminal third is quite variable. Comparison of noncoding regions reveals significant stretches of nucleotide identity in the 3' untranslated portion of exon 3 and in the intron between exons 2 and 3. An examination of cDNA sequences representing five classes of dpp transcripts indicates that these transcripts encode the same polypeptide.
Johnston, SH, Rauskolb C, Wilson R, Prabhakaran B, Irvine KD, Vogt TF.  1997.  A family of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development. 124:2245-54. AbstractWebsite
The formation of boundaries between groups of cells is a universal feature of metazoan development. Drosophila fringe modulates the activation of the Notch signal transduction pathway at the dorsal-ventral boundary of the wing imaginal disc. Three mammalian fringe-related family members have been cloned and characterized: Manic, Radical and Lunatic Fringe. Expression studies in mouse embryos support a conserved role for mammalian Fringe family members in participation in the Notch signaling pathway leading to boundary determination during segmentation. In mammalian cells, Drosophila fringe and the mouse Fringe proteins are subject to posttranslational regulation at the levels of differential secretion and proteolytic processing. When misexpressed in the developing Drosophila wing imaginal disc the mouse Fringe genes exhibit conserved and differential effects on boundary determination.
Panin, VM, Papayannopoulos V, Wilson R, Irvine KD.  1997.  Fringe modulates Notch-ligand interactions. Nature. 387:908-12. AbstractWebsite
The Notch family of transmembrane receptor proteins mediate developmental cell-fate decisions, and mutations in mammalian Notch genes have been implicated in leukaemia, breast cancer, stroke and dementia. During wing development in Drosophila, the Notch receptor is activated along the border between dorsal and ventral cells, leading to the specification of specialized cells that express Wingless (Wg) and organize wing growth and patterning. Three genes, fringe (fng), Serrate (Ser) and Delta (Dl), are involved in the cellular interactions leading to Notch activation. Ser and Dl encode transmembrane ligands for Notch, whereas fng encodes a pioneer protein. We have investigated the relationship between these genes by a combination of expression and coexpression studies in the Drosophila wing. We found that Ser and Dl maintain each other's expression by a positive feedback loop. fng is expressed specifically by dorsal cells and functions to position and restrict this feedback loop to the developing dorsal-ventral boundary. This is achieved by fng through a cell-autonomous mechanism that inhibits a cell's ability to respond to Serrate protein and potentiates its ability to respond to Delta protein.
Padgett, RW, Savage C, Das P.  1997.  Genetic and biochemical analysis of TGFβ signal transduction. Cytokine & growth factor reviews. 8:1-9. AbstractWebsite
TGF beta-like ligands are involved in many different developmental processes that pattern a variety of tissues in invertebrates and vertebrates. In the last few years, rapid progress has been made toward elucidating the developmental roles of the TGF beta-like pathways and identifying the novel components involved in transducing their signals, particularly the newly discovered Smads. This rapid progress has been the result of a synergy between classical genetic approaches and biochemical approaches, and this combined approach is likely to propel future understanding of the signaling pathway used by TGF beta.
Maduzia, LL, Padgett RW.  1997.  Drosophila MAD, a member of the Smad family, translocates to the nucleus upon stimulation of the dpp pathway. Biochem Biophys Res Commun. 238:595-8. AbstractWebsite
Smads are a novel group of proteins which act to mediate signaling by members of the TGF-beta superfamily. Seven vertebrate Smad genes, which fall into three classes, have been reported. Members of the Class I Smads have been shown to bind to the cytoplasmic portion of the TGF-beta like receptors, where they become phosphorylated and translocate to the nucleus. Once in the nucleus they may function as transcriptional activators. We wondered if translocation to the nucleus is a general property of the Smads and whether it was evolutionarily conserved. We examined the subcellular localization of Drosophila MAD and found that it is capable of nuclear translocation, in Drosophila S2 cells, when the dpp pathway is stimulated. To prove the functional conservation of receptor/Smad interactions, we used the mouse BMP type I receptor ALK6 to stimulate the pathway and found that it is capable of sending MAD to the nucleus. These results show that cytoplasmic localization with translocation to the nucleus upon stimulation is a feature of the Smads that is conserved through evolution.
McKim, KS, Hayashi-Hagihara A.  1998.  mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes & Dev.. 12:2932-42. AbstractWebsite
Meiotic recombination requires the action of several gene products in both Saccharomyces cerevisiae and Drosophila melanogaster. Genetic studies in D. melanogaster have shown that the mei-W68 gene is required for all meiotic gene conversion and crossing-over. We cloned mei-W68 using a new genetic mapping method in which P elements are used to promote crossing-over at their insertion sites. This resulted in the high-resolution mapping of mei-W68 to a 18-kb region that contains a homolog of the S. cerevisiae spo11 gene. Molecular analysis of several mutants confirmed that mei-W68 encodes an spo11 homolog. Spo11 and MEI- W68 are members of a family of proteins similar to a novel type II topoisomerase. On the basis of this and other lines of evidence, Spo11 has been proposed to be the enzymatic activity that creates the double- strand breaks needed to initiate meiotic recombination. This raises the possibility that recombination in Drosophila is also initiated by double-strand breaks. Although these homologous genes are required absolutely for recombination in both species, their roles differ in other respects. In contrast to spo11, mei-W68 is not required for synaptonemal complex formation and does have a mitotic role.
Li, T, Jin Y, Vershon AK, Wolberger C.  1998.  Crystal Structure of the MATa1/MATalpha2 Homeodomain Heterodimer in Complex with DNa Containing an A-tract. Nucleic Acids Res. 26:5707-5718. Abstract
The crystal structure of the heterodimer formed by the DNA binding domains of the yeast mating type transcription factors, MATa1 and MATalpha2, bound to a 21 bp DNA fragment has been determined at 2.5 A resolution. The DNA fragment in the present study differs at four central base pairs from the DNA sequence used in the previously studied ternary complex. These base pair changes give rise to a (dA5).(dT5) tract without changing the overall base composition of the DNA. The resulting A-tract occurs near the center of the overall 60 degrees bend in the DNA. Comparison of the two structures shows that the structural details of the DNA bend are maintained despite the DNA sequence changes. Analysis of the A5-tract DNA subfragment shows that it contains a bend toward the minor groove centered at one end of the A-tract. The observed bend is larger than that observed in the crystal structures of A-tracts embedded in uncomplexed DNA, which are straight and have been presumed to be quite rigid. Variation of the central DNA base sequence reverses the two AT base pairs contacted in the minor groove by Arg7 of the alpha2 N-terminal arm without significantly altering the DNA binding affinity of the a1/alpha2 heterodimer. The Arg7 side chain accommodates the sequence change by forming alternate H bond interactions, in agreement with the proposal that minor groove base pair recognition is insensitive to base pair reversal. Furthermore, the minor groove spine of hydration, which stabilizes the narrowed minor groove caused by DNA bending, is conserved in both structures. We also find that many of the water-mediated hydrogen bonds between the a1 and alpha2 homeodomains and the DNA are highly conserved, indicating an important role for water in stabilization of the a1/alpha2-DNA complex.
McKim, KS, Green-Marroquin BL, Sekelsky JJ, Chin G, Steinberg C, Khodosh R, Hawley RS.  1998.  Meiotic synapsis in the absence of recombination. Science. 279:876-878.
Pierce, M, Wagner M, Xie J, Gailus-Durner V, Six J, Vershon AK, Winter E.  1998.  Transcriptional Regulation of the SMK1 Mitogen-activated Protein Kinase gene During Meiotic Development in Saccharomyces Cerevisiae. Mol Cell Biol. 18:5970-5980. Abstract
Meiotic development (sporulation) in Saccharomyces cerevisiae is characterized by an ordered pattern of gene expression, with sporulation-specific genes classified as early, middle, mid-late, or late depending on when they are expressed. SMK1 encodes a mitogen-activated protein kinase required for spore morphogenesis that is expressed as a middle sporulation-specific gene. Here, we identify the cis-acting DNA elements that regulate SMK1 transcription and characterize the phenotypes of mutants with altered expression patterns. The SMK1 promoter contains an upstream activating sequence (UASS) that specifically interacts with the transcriptional activator Abf1p. The Abf1p-binding sites from the early HOP1 and the middle SMK1 promoters are functionally interchangeable, demonstrating that these elements do not play a direct role in their differential transcriptional timing. Timing of SMK1 expression is determined by another cis-acting DNA sequence termed MSE (for middle sporulation element). The MSE is required not only for activation of SMK1 transcription during middle sporulation but also for its repression during vegetative growth and early meiosis. In addition, the SMK1 MSE can repress vegetative expression in the context of the HOP1 promoter and convert HOP1 from an early to a middle gene. SMK1 function is not contingent on its tight transcriptional regulation as a middle sporulation-specific gene. However, promoter mutants with different quantitative defects in SMK1 transcript levels during middle sporulation show distinct sporulation phenotypes.
Llaca, V, Messing J.  1998.  Amplicons of maize zein genes are conserved within genic but expanded and constricted in intergenic regions. The Plant journal : for cell and molecular biology. 15:211-20. AbstractWebsite
The 78,101 base pair long sequence of a cluster of 22-kDa alpha zein genes in the maize inbred BSSS53 was determined. Each zein gene is contained within a repeat unit that varies in length. If such a repeat, or amplicon, is aligned along the entire sequence, a 10.5-fold sequence amplification is delineated. Because of insertions and deletions in intergenic regions, many of the zein genes are spaced over different distances. Only three out of 10 zein-related sequences have an intact open reading frame, indicating an unusual large number of genes unable to contribute to the accumulation of normal-size 22-kDa zein proteins. It is proposed that the seven remaining zein-related sequences be considered gene reserves because of their potential to be restored by gene conversion. Intergenic insertions in the cluster range from 1098 to 14,896 base pairs. Although they are composed of transposable element sequences, they also contain additional open reading frames, two of them showing homology to rice cDNA sequences. The average amplicon is 4423 base pairs long, with the sequence surrounding each zein gene more than 90% conserved. Coincidently, the size of the amplicon is equivalent to the average gene density (one gene within 4640 bp) in the Arabidopsis thaliana genome, one of the smallest in plants. Successive steps of amplification and insertion of DNA might explain to a certain degree how genome size variation has been generated in plants.
Messing, J, Llaca V.  1998.  Importance of anchor genomes for any plant genome project. Proceedings of the National Academy of Sciences of the United States of America. 95:2017-20. AbstractWebsite
Progress in agricultural and environmental technologies is hampered by a slower rate of gene discovery in plants than animals. The vast pool of genes in plants, however, will be an important resource for insertion of genes, via biotechnological procedures, into an array of plants, generating unique germ plasms not achievable by conventional breeding. It just became clear that genomes of grasses have evolved in a manner analogous to Lego blocks. Large chromosome segments have been reshuffled and stuffer pieces added between genes. Although some genomes have become very large, the genome with the fewest stuffer pieces, the rice genome, is the Rosetta Stone of all the bigger grass genomes. This means that sequencing the rice genome as anchor genome of the grasses will provide instantaneous access to the same genes in the same relative physical position in other grasses (e.g., corn and wheat), without the need to sequence each of these genomes independently. (i) The sequencing of the entire genome of rice as anchor genome for the grasses will accelerate plant gene discovery in many important crops (e.g., corn, wheat, and rice) by several orders of magnitudes and reduce research and development costs for government and industry at a faster pace. (ii) Costs for sequencing entire genomes have come down significantly. Because of its size, rice is only 12% of the human or the corn genome, and technology improvements by the human genome project are completely transferable, translating in another 50% reduction of the costs. (iii) The physical mapping of the rice genome by a group of Japanese researchers provides a jump start for sequencing the genome and forming an international consortium. Otherwise, other countries would do it alone and own proprietary positions.
Berk, AJ, Boyer TG, Kapanidis AN, Ebright RH, Kobayashi NN, Horn PJ, Sullivan SM, Koop R, Surby MA, Triezenberg SJ.  1998.  Mechanisms of viral activators.. Cold Spring Harbor symposia on quantitative biology. 63:243-52. Abstract
Adenovirus large E1A, Epstein-Barr virus Zebra, and herpes simplex virus VP16 were studied as models of animal cell transcriptional activators. Large E1A can activate transcription from a TATA box, a result that leads us to suggest that it interacts with a general transcription factor. Initial studies showed that large E1A binds directly to the TBP subunit of TFIID. However, analysis of multiple E1A and TBP mutants failed to support the significance of this in vitro interaction for the mechanism of activation. Recent studies to be reported elsewhere indicate that conserved region 3 of large E1A, which is required for its activation function, binds to one subunit of a multisubunit protein that stimulates in vitro transcription in response to large E1A and other activators. A method was developed for the rapid purification of TFIID approximately 25,000-fold to near homogeneity from a cell line engineered to express an epitope-tagged form of TBP. Purified TFIID contains 11 major TAFs ranging in mass from approximately 250 to 20 kD. Zta and VP16, but not large E1A, greatly stimulate the rate and extent of assembly of a TFIID-TFIIA complex on promoter DNA (DA complex). For VP16, this is a function of the carboxy-terminal activation subdomain. An excellent correlation was found between the ability of VP16C mutants to stimulate DA complex assembly and their ability to activate transcription in vivo. Consequently, for a subset of activation domains, DA complex assembly activity is an important component of the overall mechanism of activation.
Reinberg, D, Orphanides G, Ebright R, Akoulitchev S, Carcamo J, Cho H, Cortes P, Drapkin R, Flores O, Ha I et al..  1998.  The RNA polymerase II general transcription factors: past, present, and future.. Cold Spring Harbor symposia on quantitative biology. 63:83-103.
Ebright, RH.  1998.  RNA polymerase-DNA interaction: structures of intermediate, open, and elongation complexes.. Cold Spring Harbor symposia on quantitative biology. 63:11-20.
Lagrange, T, Kapanidis AN, Tang H, Reinberg D, Ebright RH.  1998.  New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB.. Genes & development. 12(1):34-44. Abstract
A sequence element located immediately upstream of the TATA element, and having the consensus sequence 5'-G/C-G/C-G/A-C-G-C-C-3', affects the ability of transcription factor IIB to enter transcription complexes and support transcription initiation. The sequence element is recognized directly by the transcription factor IIB. Recognition involves alpha-helices 4' and 5' of IIB, which comprise a helix-turn-helix DNA-binding motif. These observations establish that transcription initiation involves a fourth core promoter element, the IIB recognition element (BRE), in addition to the TATA element, the initiator element, and the downstream promoter element, and involves a second sequence-specific general transcription factor, IIB, in addition to transcription factor IID.
Savery, NJ, Lloyd GS, Kainz M, Gaal T, Ross W, Ebright RH, Gourse RL, Busby SJ.  1998.  Transcription activation at Class II CRP-dependent promoters: identification of determinants in the C-terminal domain of the RNA polymerase alpha subunit.. The EMBO journal. 17(12):3439-47. Abstract
Many transcription factors, including the Escherichia coli cyclic AMP receptor protein (CRP), act by making direct contacts with RNA polymerase. At Class II CRP-dependent promoters, CRP activates transcription by making two such contacts: (i) an interaction with the RNA polymerase alpha subunit C-terminal domain (alphaCTD) that facilitates initial binding of RNA polymerase to promoter DNA; and (ii) an interaction with the RNA polymerase alpha subunit N-terminal domain that facilitates subsequent promoter opening. We have used random mutagenesis and alanine scanning to identify determinants within alphaCTD for transcription activation at a Class II CRP-dependent promoter. Our results indicate that Class II CRP-dependent transcription requires the side chains of residues 265, 271, 285-288 and 317. Residues 285-288 and 317 comprise a discrete 20x10 A surface on alphaCTD, and substitutions within this determinant reduce or eliminate cooperative interactions between alpha subunits and CRP, but do not affect DNA binding by alpha subunits. We propose that, in the ternary complex of RNA polymerase, CRP and a Class II CRP-dependent promoter, this determinant in alphaCTD interacts directly with CRP, and is distinct from and on the opposite face to the proposed determinant for alphaCTD-CRP interaction in Class I CRP-dependent transcription.
Sullivan, SM, Horn PJ, Olson VA, Koop AH, Niu W, Ebright RH, Triezenberg SJ.  1998.  Mutational analysis of a transcriptional activation region of the VP16 protein of herpes simplex virus.. Nucleic acids research. 26(19):4487-96. Abstract
The VP16 protein of herpes simplex virus is a potent transcriptional activator of the viral immediate early genes. The transcriptional activation region of VP16 can be divided into two functional subregions, here designated VP16N (comprising amino acids 413-456) and VP16C (amino acids 450-490). Assays of VP16C mutants resulting from both random and alanine-scanning mutagenesis indicated that the sidechains of three phenylalanines (at positions 473, 475 and 479) and one acidic residue (glutamate 476) are important for transcriptional activation. Aromatic and bulky hydrophobic amino acids were effective substitutes for each of the three Phe residues, whereas replacement with smaller or polar amino acids resulted in loss of transcriptional function. In contrast, many changes were tolerated for Glu476, including bulky hydrophobic and basic amino acids, indicating that the negative charge at this position contributes little to the function of this subregion. Similar relative activities for most of the mutants were observed in yeast and in mammalian cells, indicating that the structural requirements for this activation region are comparable in these two species. These results reinforce the hypothesis that bulky hydrophobic residues, not acidic residues, are most critical for the activity of this 'acidic' transcriptional activation region.
Das, P, Maduzia LL, Wang H, Finelli AL, Cho SH, Smith MM, Padgett RW.  1998.  The Drosophila gene Medea demonstrates the requirement for different classes of Smads in dpp signaling. Development (Cambridge, England). 125:1519-28. AbstractWebsite
Signals from transforming growth factor-beta (TGF-beta) ligands are transmitted within the cell by members of the Smad family, which can be grouped into three classes based on sequence similarities. Our previous identification of both class I and II Smads functioning in a single pathway in C. elegans, raised the issue of whether the requirement for Smads derived from different classes is a general feature of TGF-beta signaling. We report here the identification of a new Drosophila class II Smad, Medea, a close homolog of the human tumor-suppressor gene DPC4. Embryos from germline clones of both Medea and Mad (a class I Smad) are ventralized, as are embryos null for the TGF-beta-like ligand decapentaplegic (dpp). Loss of Medea also blocks dpp signaling during later development, suggesting that Medea, like Mad, is universally required for dpp signaling. Furthermore, we show that the necessity for these two closely related, non-redundant Smads, is due to their different signaling properties - upon activation of the Dpp pathway, Mad is required to actively translocate Medea into the nucleus. These results provide a paradigm for, and distinguish between, the requirement for class I and II Smads in Dpp/BMP signaling.
Padgett, RW, Cho SH, Evangelista C.  1998.  Smads are the central component in transforming growth factor-β signaling. Pharmacology & therapeutics. 78:47-52. AbstractWebsite
Until recently, little was known about how transforming growth factor (TGF)-beta signals are transduced to the nucleus. With the discovery of the Smad proteins initially in Drosophila and C. elegans, the unraveling of the pathway has begun. Nine different vertebrate members also have been reported, indicating that Smads are a conserved component of the TGF-beta pathway. Currently, there are three functional classes of Smads. Class I Smads are phosphorylated by TGF-beta receptors and move to the nucleus. The Class II Smads function with Class I Smads, while Class III Smads antagonize the function of Class I Smads. New evidence shows that Smads bind specific DNA sequences and induce transcription of downstream target genes, thus placing the Smads at the center of the TGF-beta signaling pathway.