Planta, J, Xiang X, Leustek T, Messing J.  2017.  Engineering sulfur storage in maize seed proteins without apparent yield loss.. Proceedings of the National Academy of Sciences of the United States of America. 114(43):11386-11391. Abstract
Sulfur assimilation may limit the pool of methionine and cysteine available for incorporation into zeins, the major seed storage proteins in maize. This hypothesis was tested by producing transgenic maize with deregulated sulfate reduction capacity achieved through leaf-specific expression of the Escherichia coli enzyme 3'-phosphoadenosine-5'-phosphosulfate reductase (EcPAPR) that resulted in higher methionine accumulation in seeds. The transgenic kernels have higher expression of the methionine-rich 10-kDa δ-zein and total protein sulfur without reduction of other zeins. This overall increase in the expression of the S-rich zeins describes a facet of regulation of these proteins under enhanced sulfur assimilation. Transgenic line PE5 accumulates 57.6% more kernel methionine than the high-methionine inbred line B101. In feeding trials with chicks, PE5 maize promotes significant weight gain compared with nontransgenic kernels. Therefore, increased source strength can improve the nutritional value of maize without apparent yield loss and may significantly reduce the cost of feed supplementation.
Ge, Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu M-C, Luo X, Ruan H, García-Valencia LE, Zhong S et al..  2017.  <em>Arabidopsis</em> pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science. 358(6370):1596. AbstractWebsite
In plants, sperm cells travel through the pollen tube as it grows toward the ovule. Successful fertilization depends on the pollen tube rupturing to release the sperm cells (see the Perspective by Stegmann and Zipfel). Ge et al. and Mecchia et al. elucidated the intercellular cross-talk that maintains pollen tube integrity during growth but destroys it at just the right moment. The signaling peptides RALF4 and RALF19, derived from the pollen tube, maintain its integrity as it grows. Once in reach of the ovule, a related signaling peptide, RALF34, which derives from female tissues, takes over and causes rupture of the pollen tube.Science, this issue p. 1596, p. 1600; see also p. 1544In flowering plants, fertilization requires complex cell-to-cell communication events between the pollen tube and the female reproductive tissues, which are controlled by extracellular signaling molecules interacting with receptors at the pollen tube surface. We found that two such receptors in Arabidopsis, BUPS1 and BUPS2, and their peptide ligands, RALF4 and RALF19, are pollen tube–expressed and are required to maintain pollen tube integrity. BUPS1 and BUPS2 interact with receptors ANXUR1 and ANXUR2 via their ectodomains, and both sets of receptors bind RALF4 and RALF19. These receptor-ligand interactions are in competition with the female-derived ligand RALF34, which induces pollen tube bursting at nanomolar concentrations. We propose that RALF34 replaces RALF4 and RALF19 at the interface of pollen tube–female gametophyte contact, thereby deregulating BUPS-ANXUR signaling and in turn leading to pollen tube rupture and sperm release.