Publications

2016
Hou, Y, Guo X, Cyprys P, Zhang Y, Bleckmann A, Cai L, Huang Q, Luo Y, Gu H, Dresselhaus T et al..  2016.  Maternal ENODLs Are Required for Pollen Tube Reception in Arabidopsis.. Curr. Biol.. doi:10.1016/j.cub.2016.06.053
Bird, JG, Zhang Y, Tian Y, Panova N, Barvík I, Greene L, Liu M, Buckley B, Krásný L, Lee JK et al..  2016.  The mechanism of RNA 5′ capping with NAD+, NADH, and desphospho-CoA. Nature. 535(7612):444-447.
Krauchunas, AR, Marcello MR, Singson "A.  2016.  The molecular complexity of fertilization: Introducing the concept of a fertilization synapse. Molecular Reproduction and Development.
Winkelman, JT, Vvedenskaya IO, Zhang Y, Zhang Y, Bird JG, Taylor DM, Gourse RL, Ebright RH, Nickels BE.  2016.  Multiplexed protein-DNA crosslinking: scrunching in transcription start site selection. Science. 351(6277):1090-1093.
Vinyard, DJ, Sun JS, Gimpel J, Ananyev GM, Mayfield SP, Dismukes GC.  2016.  Natural isoforms of the Photosystem II D1 subunit differ in photoassembly efficiency of the water-oxidizing complex.. Photosynth Res.. Abstract
Oxygenic photosynthesis efficiency at increasing solar flux is limited by light-induced damage (photoinhibition) of Photosystem II (PSII), primarily targeting the D1 reaction center subunit. Some cyanobacteria contain two natural isoforms of D1 that function better under low light (D1:1) or high light (D1:2). Herein, rates and yields of photoassembly of the Mn4CaO5 water-oxidizing complex (WOC) from the free inorganic cofactors (Mn2+, Ca2+, water, electron acceptor) and apo-WOC-PSII are shown to differ significantly: D1:1 apo-WOC-PSII exhibits a 2.3-fold faster rate-limiting step of photoassembly and up to seven-fold faster rate to the first light-stable Mn3+ intermediate, IM1*, but with a much higher rate of photoinhibition than D1:2. Conversely, D1:2 apo-WOC-PSII assembles slower but has up to seven-fold higher yield, achieved by a higher quantum yield of charge separation and slower photoinhibition rate. These results confirm and extend previous observations of the two holoenzymes: D1:2-PSII has a greater quantum yield of primary charge separation, faster [P680 + Q A - ] charge recombination and less photoinhibition that results in a slower rate and higher yield of photoassembly of its apo-WOC-PSII complex. In contrast, D1:1-PSII has a lower quantum yield of primary charge separation, a slower [P680 + Q A - ] charge recombination rate, and faster photoinhibition that together result in higher rate but lower yield of photoassembly at higher light intensities. Cyanobacterial PSII reaction centers that contain the high- and low-light D1 isoforms can tailor performance to optimize photosynthesis at varying light conditions, with similar consequences on their photoassembly kinetics and yield. These different efficiencies of photoassembly versus photoinhibition impose differential costs for biosynthesis as a function of light intensity.
Ananyev, GM, Gates C, Dismukes GC.  2016.  The Oxygen quantum yield in diverse algae and cyanobacteria is controlled by partitioning of flux between linear and cyclic electron flow within photosystem II.. Biochim Biophys Acta.. 1857(9):1380-1391. Abstract
We have measured flash-induced oxygen quantum yields (O2-QYs) and primary charge separation (Chl variable fluorescence yield, Fv/Fm) in vivo among phylogenetically diverse microalgae and cyanobacteria. Higher O2-QYs can be attained in cells by releasing constraints on charge transfer at the Photosystem II (PSII) acceptor side by adding membrane-permeable benzoquinone (BQ) derivatives that oxidize plastosemiquinone QB- and QBH2. This method allows uncoupling PSII turnover from its natural regulation in living cells, without artifacts of isolating PSII complexes. This approach reveals different extents of regulation across species, controlled at the QB- acceptor site. Arthrospira maxima is confirmed as the most efficient PSII-WOC (water oxidizing complex) and exhibits the least regulation of flux. Thermosynechococcus elongatus exhibits an O2-QY of 30%, suggesting strong downregulation. WOC cycle simulations with the most accurate model (VZAD) show that a light-driven backward transition (net addition of an electron to the WOC, distinct from recombination) occurs in up to 25% of native PSIIs in the S2 and S3 states, while adding BQ prevents backward transitions and increases the lifetime of S2 and S3 by 10-fold. Backward transitions occur in PSIIs that have plastosemiquinone radicals in the QB site and are postulated to be physiologically regulated pathways for storing light energy as proton gradient through direct PSII-cyclic electron flow (PSII-CEF). PSII-CEF is independent of classical PSI/cyt-b6f-CEF and provides an alternative proton translocation pathway for energy conversion. PSII-CEF enables variable fluxes between linear and cyclic electron pathways, thus accommodating species-dependent needs for redox and ion-gradient energy sources powered by a single photosystem.
Shao, W, Dong J.  2016.  Polarity in plant asymmetric cell division: Division orientation and cell fate differentiation.. Dev. Biol.. doi:10.1016/j.ydbio.2016.07.020
Gates, C, Ananyev GM, Dismukes C.  2016.  The strontium inorganic mutant of the water oxidizing center (CaMn4O5) of PSII improves WOC efficiency but slows electron flux through the terminal acceptors.. Biochim Biophys Acta.. 1857(9):1550-1560. Abstract
Herein we extend prior studies of biosynthetic strontium replacement of calcium in PSII-WOC core particles to characterize whole cells. Previous studies of Thermosynechococcus elongatus found a lower rate of light-saturated O2 from isolated PSII-WOC(Sr) cores and 5–8 × slower rate of oxygen release. We find similar properties in whole cells, and show it is due to a 20% larger Arrhenius activation barrier for O2 evolution. Cellular adaptation to the sluggish PSII-WOC(Sr) cycle occurs in which flux through the QAQB acceptor gate becomes limiting for turnover rate in vivo. Benzoquinone derivatives that bind to QB site remove this kinetic chokepoint yielding 31% greater O2 quantum yield (QY) of PSII-WOC(Sr) vs. PSII-WOC(Ca). QY and efficiency of the WOC(Sr) catalytic cycle are greatly improved at low light flux, due to fewer misses and backward transitions and 3-fold longer lifetime of the unstable S3 state, attributed to greater thermodynamic stabilization of the WOC(Sr) relative to the photoactive tyrosine YZ. More linear and less cyclic electron flow through PSII occurs per PSII-WOC(Sr). The organismal response to the more active PSII centers in Sr-grown cells at 45 °C is to lower the number of active PSII-WOC per Chl, producing comparable oxygen and energy per cell. We conclude that redox and protonic energy fluxes created by PSII are primary determinants for optimal growth rate of T. elongatus. We further conclude that the (Sr-favored) intermediate-spin S = 5/2 form of the S2 state is the active form in the catalytic cycle relative to the low-spin S = 1/2 form.
Delatte, B, Wang F, Ngoc L V, Collignon E, Bonvin E, Deplus R, Calonne E, Hassabi B, Putmans P, Awe S et al..  2016.  Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science. 351(6270):282-285. AbstractWebsite
Hydroxymethylcytosine, well described in DNA, occurs also in RNA. Here, we show that hydroxymethylcytosine preferentially marks polyadenylated RNAs and is deposited by Tet in Drosophila. We map the transcriptome-wide hydroxymethylation landscape, revealing hydroxymethylcytosine in the transcripts of many genes, notably in coding sequences, and identify consensus sites for hydroxymethylation. We found that RNA hydroxymethylation can favor mRNA translation. Tet and hydroxymethylated RNA are found to be most abundant in the Drosophila brain, and Tet-deficient fruitflies suffer impaired brain development, accompanied by decreased RNA hydroxymethylation. This study highlights the distribution, localization, and function of cytosine hydroxymethylation and identifies central roles for this modification in Drosophila.
Schifano, JM, Cruz JW, Edifor R, Vvedenskaya IO, Ouyang M, Husson RN, Nickels BE, Woychik NA.  2016.  tRNA is a new target for cleavage by a MazF toxin. Nucleic Acids Research. 44(3):1256-1270.
2015
Lutz, KA, Martin C, Khairzada S, Maliga P.  2015.  Steroid-inducible BABY BOOM system for development of fertile Arabidopsis thaliana plants after prolonged tissue culture. Plant Cell Rep. 34:1849-56. AbstractWebsite
KEY MESSAGE: We describe a steroid-inducible BABY BOOM system that improves plant regeneration in Arabidopsis leaf cultures and yields fertile plants. Regeneration of Arabidopsis thaliana plants for extended periods of time in tissue culture may result in sterile plants. We report here a novel approach for A. thaliana regeneration using a regulated system to induce embryogenic cultures from leaf tissue. The system is based on BABY BOOM (BBM), a transcription factor that turns on genes involved in embryogenesis. We transformed the nucleus of A. thaliana plants with BBM:GR, a gene in which the BBM coding region is fused with the glucocorticoid receptor (GR) steroid-binding domain. In the absence of the synthetic steroid dexamethasone (DEX), the BBM:GR fusion protein is localized in the cytoplasm. Only when DEX is included in the culture medium does the BBM transcription factor enter the nucleus and turn on genes involved in embryogenesis. BBM:GR plant lines show prolific shoot regeneration from leaf pieces on media containing DEX. Removal of DEX from the culture media allowed for flowering and seed formation. Therefore, use of BBM:GR leaf tissue for regeneration of plants for extended periods of time in tissue culture will facilitate the recovery of fertile plants.
Mao, Y, Francis-West P, Irvine KD.  2015.  A Fat4-Dchs1 signal between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching.. Development (Cambridge, England). AbstractWebsite
Formation of the kidney requires reciprocal signaling among the ureteric tubules, cap mesenchyme and surrounding stromal mesenchyme to orchestrate complex morphogenetic events. The protocadherin Fat4 influences signaling from stromal to cap mesenchyme cells to influence their differentiation into nephrons. Here we characterize the role of a putative binding partner of Fat4, the protocadherin Dchs1. Mutation of Dchs1 leads to increased numbers of cap mesenchyme cells, which are abnormally arranged around the ureteric bud tips, and impairs nephron morphogenesis. Mutation of Dchs1 also reduces branching of the ureteric bud and impairs differentiation of ureteric bud tip cells into trunk cells. Genetically, Dchs1 is required specifically within cap mesenschyme cells. The similarity of Dchs1 phenotypes to stromal-less kidneys and to Fat4 mutants implicate Dchs1 in Fat4-dependent stroma-to-cap mesenchyme signaling. Antibody staining of genetic mosaics reveals that Dchs1 protein localization is polarized within cap mesenchyme cells, where it accumulates at the interface with stromal cells, implying that it interacts directly with a stromal protein. Our observations identify a role for Fat4-Dchs1 in signaling between cell layers, implicate Dchs1 as a Fat4 receptor for stromal signaling that is essential for kidney development, and establish that vertebrate Dchs1 can be molecularly polarized in vivo.
Irvine, KD, Harvey KF.  2015.  Control of organ growth by patterning and hippo signaling in Drosophila.. Cold Spring Harbor perspectives in biology. 7 AbstractWebsite
Control of organ size is of fundamental importance and is controlled by genetic, environmental, and mechanical factors. Studies in many species have pointed to the existence of both organ-extrinsic and -intrinsic size-control mechanisms, which ultimately must coordinate to regulate organ size. Here, we discuss organ size control by organ patterning and the Hippo pathway, which both act in an organ-intrinsic fashion. The influence of morphogens and other patterning molecules couples growth and patterning, whereas emerging evidence suggests that the Hippo pathway controls growth in response to mechanical stimuli and signals emanating from cell-cell interactions. Several points of cross talk have been reported between signaling pathways that control organ patterning and the Hippo pathway, both at the level of membrane receptors and transcriptional regulators. However, despite substantial progress in the past decade, key questions in the growth-control field remain, including precisely how and when organ patterning and the Hippo pathway communicate to control size, and whether these communication mechanisms are organ specific or general. In addition, elucidating mechanisms by which organ-intrinsic cues, such as patterning factors and the Hippo pathway, interface with extrinsic cues, such as hormones to control organ size, remain unresolved.
Cao, HX, Vu GT, Wang W, Messing J, Schubert I.  2015.  Chromatin organisation in duckweed interphase nuclei in relation to the nuclear DNA content. Plant Biol (Stuttg). 17 Suppl 1:120-4. AbstractWebsite
The accessibility of DNA during fundamental processes, such as transcription, replication and DNA repair, is tightly modulated through a dynamic chromatin structure. Differences in large-scale chromatin structure at the microscopic level can be observed as euchromatic and heterochromatic domains in interphase nuclei. Here, key epigenetic marks, including histone H3 methylation and 5-methylcytosine (5-mC) as a DNA modification, were studied cytologically to describe the chromatin organisation of representative species of the five duckweed genera in the context of their nuclear DNA content, which ranged from 158 to 1881 Mbp. All studied duckweeds, including Spirodela polyrhiza with a genome size and repeat proportion similar to that of Arabidopsis thaliana, showed dispersed distribution of heterochromatin signatures (5mC, H3K9me2 and H3K27me1). This immunolabelling pattern resembles that of early developmental stages of Arabidopsis nuclei, with less pronounced heterochromatin chromocenters and heterochromatic marks weakly dispersed throughout the nucleus.
Wang, W, Messing J.  2015.  Status of duckweed genomics and transcriptomics. Plant Biol (Stuttg). 17 Suppl 1:10-5. AbstractWebsite
Duckweeds belong to the smallest flowering plants that undergo fast vegetative growth in an aquatic environment. They are commonly used in wastewater treatment and animal feed. Whereas duckweeds have been studied at the biochemical level, their reduced morphology and wide environmental adaption had not been subjected to molecular analysis until recently. Here, we review the progress that has been made in using a DNA barcode system and the sequences of chloroplast and mitochondrial genomes to identify duckweed species at the species or population level. We also review analysis of the nuclear genome sequence of Spirodela that provides new insights into fundamental biological questions. Indeed, reduced gene families and missing genes are consistent with its compact morphogenesis, aquatic floating and suppression of juvenile-to-adult transition. Furthermore, deep RNA sequencing of Spirodela at the onset of dormancy and Landoltia in exposure of nutrient deficiency illustrate the molecular network for environmental adaption and stress response, constituting major progress towards a post-genome sequencing phase, where further functional genomic details can be explored. Rapid advances in sequencing technologies could continue to promote a proliferation of genome sequences for additional ecotypes as well as for other duckweed species.
Bosacchi, M, Gurdon C, Maliga P.  2015.  Plastid Genotyping Reveals Uniformity of cms-T Maize Cytoplasms.. Plant Physiology. Abstract
Cytoplasmic male sterile (CMS) lines in maize have been classified by their response to specific restorer genes into three categories: cms-C, cms-S, and cms-T. A mitochondrial genome representing each of the CMS cytotypes has been sequenced and male sterility in the cms-S and cms-T cytotypes is linked to chimeric mitochondrial genes. To identify markers for plastid genotyping, we sequenced the plastid genomes (ptDNA) of three fertile maize lines (B37, B73, A188) and the B37 cms-C, cms-S, and cms-T cytoplasmic substitution lines. We found that the plastid genomes of B37 and B73 lines are identical. Furthermore, the fertile and CMS plastid genomes are conserved, differing only by 0-3 single nucleotide polymorphisms (SNPs) in coding regions and 8-22 SNPs and 10-21 short insertions/deletions in noncoding regions. To gain insight into the origin and transmission of the cms-T trait, we identified three SNPs unique to the cms-T plastids, and tested the three diagnostic SNPs in 27 cms-T lines, representing the HA, I, Q, RS and T male sterile cytoplasms. We report that each of the tested 27 cms-T group accessions have the same three diagnostic plastid SNPs indicating a single origin and maternal co-transmission of the cms-T mitochondria and plastids to the seed progeny. Our data exclude exceptional pollen transmission of organelles or multiple horizontal gene transfer events as the source of the urf13-T gene in the cms-T cytoplasms. Plastid genotyping enables a reassessment of evolutionary relationships of cytoplasms in cultivated maize.
Xu, J-H, Liu Q, Hu W, Wang T, Xue Q, Messing J.  2015.  Dynamics of chloroplast genomes in green plants.. Genomics. 106(4):221-31. Abstract
Chloroplasts are essential organelles, in which genes have widely been used in the phylogenetic analysis of green plants. Here, we took advantage of the breadth of plastid genomes (cpDNAs) sequenced species to investigate their dynamic changes. Our study showed that gene rearrangements occurred more frequently in the cpDNAs of green algae than in land plants. Phylogenetic trees were generated using 55 conserved protein-coding genes including 33 genes for photosynthesis, 16 ribosomal protein genes and 6 other genes, which supported the monophyletic evolution of vascular plants, land plants, seed plants, and angiosperms. Moreover, we could show that seed plants were more closely related to bryophytes rather than pteridophytes. Furthermore, the substitution rate for cpDNA genes was calculated to be 3.3×10(-10), which was almost 10 times lower than genes of nuclear genomes, probably because of the plastid homologous recombination machinery.
Zhang, W, Garcia N, Feng Y, Zhao H, Messing J.  2015.  Genome-wide histone acetylation correlates with active transcription in maize.. Genomics. 106(4):214-20. Abstract
Gene expression is regulated at many different levels during the life cycle of all plant species. Recent investigations have taken advantage of next-generation sequencing to study the relevance of DNA methylation and sRNAs in controlling tissue-specific gene expression in maize at the genome-wide level. Here, we profiled H3K27ac in maize, which has one of the largest sequenced plant genomes due to the amplification of retrotransposons. Because transcribed genes represent only a small proportion of its genome, gene-specific epigenetic modifications are concentrated in a relatively small percentage of the genome. Indeed, H3K27ac marks are mostly in gene-rich, in contrast to gene-poor regions. A large proportion of those marks are located in transcribed regions of genes, including 111 out of 458 known genetic loci. Moreover, increased transcription correlates with the presence of H3K27ac modification in gene bodies. Using maize as an example, we suggest that H3K27ac marks actively transcribed genes in plants.
Vvedenskaya, IO, Zhang Y, Goldman SR, Valenti A, Visone V, Taylor DM, Ebright RH, Nickels BE.  2015.  Massively Systematic Transcript End Readout, "MASTER": Transcription Start Site Selection, Transcriptional Slippage, and Transcript Yields.. Molecular cell. 60:953-965. Abstract
We report the development of a next-generation sequencing-based technology that entails construction of a DNA library comprising up to at least 4(7) (∼16,000) barcoded sequences, production of RNA transcripts, and analysis of transcript ends and transcript yields (massively systematic transcript end readout, "MASTER"). Using MASTER, we define full inventories of transcription start sites ("TSSomes") of Escherichia coli RNA polymerase for initiation at a consensus core promoter in vitro and in vivo; we define the TSS-region DNA sequence determinants for TSS selection, reiterative initiation ("slippage synthesis"), and transcript yield; and we define effects of DNA topology and NTP concentration. The results reveal that slippage synthesis occurs from the majority of TSS-region DNA sequences and that TSS-region DNA sequences have profound, up to 100-fold, effects on transcript yield. The results further reveal that TSSomes depend on DNA topology, consistent with the proposal that TSS selection involves transcription-bubble expansion ("scrunching") and transcription-bubble contraction ("anti-scrunching").
Garcia, N, Zhang W, Wu Y, Messing J.  2015.  Evolution of gene expression after gene amplification.. Genome biology and evolution. 7(5):1303-12. AbstractWebsite
We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat-maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators.
Hassan, HM, Degen D, Jang K H, Ebright RH, Fenical W.  2015.  Salinamide F, new depsipeptide antibiotic and inhibitor of bacterial RNA polymerase from a marine-derived Streptomyces sp.. The Journal of antibiotics. 68(3):206-9.
Feng, Y, Degen D, Wang X, Gigliotti M, Liu S, Zhang Y, Das D, Michalchuk T, Ebright YW, Talaue M et al..  2015.  Structural basis of transcription inhibition by CBR hydroxamidines and CBR pyrazoles. Structure. 23:1470-1481. AbstractWebsite
CBR hydroxamidines are small-molecule inhibitors of bacterial RNA polymerase (RNAP) discovered through high-throughput screening of synthetic-compound libraries. CBR pyrazoles are structurally related RNAP inhibitors discovered through scaffold hopping from CBR hydroxamidines. CBR hydroxamidines and pyrazoles selectively inhibit Gram-negative bacterial RNAP and exhibit selective antibacterial activity against Gram-negative bacteria. Here, we report crystal structures of the prototype CBR hydroxamidine, CBR703, and a CBR pyrazole in complex with E. coli RNAP holoenzyme. In addition, we define the full resistance determinant for CBR703, show that the binding site and resistance determinant for CBR703 do not overlap the binding sites and resistance determinants of other characterized RNAP inhibitors, show that CBR703 exhibits no or minimal cross-resistance with other characterized RNAP inhibitors, and show that co-administration of CBR703 with other RNAP inhibitors results in additive antibacterial activities. The results set the stage for structure-based optimization of CBR inhibitors as antibacterial drugs.
Głuszek, AA, Cullen FC, Li W, Battaglia RA, Radford SJ, Costa MF, McKim KS, Goshima G, Ohkura H.  2015.  The microtubule catastrophe promoter Sentin delays stable kinetochore-microtubule attachment in oocytes.. The Journal of cell biology. 211(6):1113-20. Abstract
The critical step in meiosis is to attach homologous chromosomes to the opposite poles. In mouse oocytes, stable microtubule end-on attachments to kinetochores are not established until hours after spindle assembly, and phosphorylation of kinetochore proteins by Aurora B/C is responsible for the delay. Here we demonstrated that microtubule ends are actively prevented from stable attachment to kinetochores until well after spindle formation in Drosophila melanogaster oocytes. We identified the microtubule catastrophe-promoting complex Sentin-EB1 as a major factor responsible for this delay. Without this activity, microtubule ends precociously form robust attachments to kinetochores in oocytes, leading to a high proportion of homologous kinetochores stably attached to the same pole. Therefore, regulation of microtubule ends provides an alternative novel mechanism to delay stable kinetochore-microtubule attachment in oocytes.
Liu, Z, Li X, Wang T, Messing J, Xu J-H.  2015.  The Wukong Terminal-Repeat Retrotransposon in Miniature (TRIM) Elements in Diverse Maize Germplasm.. G3 (Bethesda, Md.). 5(8):1585-92. AbstractWebsite
TRIMs (terminal-repeat retrotransposons in miniature), which are characterized by their small size, have been discovered in all investigated vascular plants and even in animals. Here, we identified a highly conservative TRIM family referred to as Wukong elements in the maize genome. The Wukong family shows a distinct pattern of tandem arrangement in the maize genome suggesting a high rate of unequal crossing over. Estimation of insertion times implies a burst of retrotransposition activity of the Wukong family after the allotetraploidization of maize. Using next-generation sequencing data, we detected 87 new Wukong insertions in parents of the maize NAM population relative to the B73 reference genome and found abundant insertion polymorphism of Wukong elements in 75 re-sequenced maize lines, including teosinte, landraces, and improved lines. These results suggest that Wukong elements possessed a persistent retrotransposition activity throughout maize evolution. Moreover, the phylogenetic relationships among 76 maize inbreds and their relatives based on insertion polymorphisms of Wukong elements should provide us with reliable molecular markers for biodiversity and genetics studies.