Publications

1986
Loeb, DD, Padgett RW, Hardies SC, Shehee WR, Comer MB, Edgell MH, Hutchison CA.  1986.  The sequence of a large L1Md element reveals a tandemly repeated 5' end and several features found in retrotransposons. Mol Cell Biol. 6:168-82. AbstractWebsite
The complete nucleotide sequence of a 6,851-base pair (bp) member of the L1Md repetitive family from a selected random isolate of the BALB/c mouse genome is reported here. Five kilobases of the element contains two overlapping reading frames of 1,137 and 3,900 bp. The entire 3,900-bp frame and the 3' 600 bp of the 1,137-bp frame, when compared with a composite consensus primate L1 sequence, show a ratio of replacement to silent site differences characteristic of protein coding sequences. This more closely defines the protein coding capacity of this repetitive family, which was previously shown to possess a large open reading frame of undetermined extent. The relative organization of the 1,137- and 3,900-bp reading frames, which overlap by 14 bp, bears resemblance to protein-coding, mobile genetic elements. Homology can be found between the amino acid sequence of the 3,900-bp frame and selected domains of several reverse transcriptases. The 5' ends of the two L1Md elements described in this report have multiple copies, 4 2/3 copies and 1 2/3 copy, of a 208-bp direct tandem repeat. The sequence of this 208-bp element differs from the sequence of a previously defined 5' end for an L1Md element, indicating that there are at least two different 5' end motifs for L1Md.
1987
Ebright, RH, Kolb A, Buc H, Kunkel TA, Krakow JS, Beckwith J.  1987.  Role of glutamic acid-181 in DNA-sequence recognition by the catabolite gene activator protein (CAP) of Escherichia coli: altered DNA-sequence-recognition properties of [Val181]CAP and [Leu181]CAP.. Proceedings of the National Academy of Sciences of the United States of America. 84(17):6083-7. Abstract
It has been proposed that Glu-181 of the catabolite gene activator protein (CAP) makes direct contact with certain base pairs of the specific DNA site. We have purified wild-type CAP and two substituted CAP variants, [Val181]CAP and [Leu181]CAP, and have assessed the DNA-sequence-recognition properties in vitro with respect to positions 5, 6, 7, 8, and 16 of the DNA site. The data indicate that [Val181]CAP and [Leu181]CAP fail to discriminate between the consensus DNA base pair and the three non-consensus-DNA base pairs at 2-fold-related positions 7 and 16 of the DNA site. In contrast, [Val181]CAP and [Leu181]CAP retain the ability to discriminate between different base pairs at positions 5 and 8 of the DNA site. We conclude that Glu-181 of CAP makes a direct contact with 2-fold-related positions 7 and 16 of the DNA site, as proposed previously based on in vivo results. We propose that upon replacement of Glu-181 by valine or leucine, this contact is eliminated and is replaced by no other functional contact. We estimate that the contact by Glu-181 with each position contributes -0.7 kcal/mol to the total CAP-DNA binding free energy.
Edgell, MH, Hardies SC, Loeb DD, Shehee WR, Padgett RW, Burton FH, Comer MB, Casavant NC, Funk FD, Hutchison CA.  1987.  The L1 family in mice. Progress in clinical and biological research. 251:107-29.Website
Padgett, RW, Loeb DD, Snyder LR, Edgell MH, Hutchison CA.  1987.  The molecular organization of the β-globin complex of the deer mouse, Peromyscus maniculatus. Molecular biology and evolution. 4:30-45. AbstractWebsite
Recombinant DNA clones have been isolated that contain 80 kb of the beta-globin complex from the deer mouse, Peromyscus maniculatus. Comparisons of this complex with that from the laboratory mouse, Mus domesticus (with an order 5'-Hbby, Hbb-bhO, Hbb-bhl, Hbb-bh2, Hbb-bh3, Hbb-bl, Hbb-b2 3') highlight organizational trends in the beta-globin complex since the two species diverged. Unlike other mammals studied thus far, the deer mouse possesses three adult genes. Partial sequence analysis indicates that each of the three adult genes is intact and hence may be functional. Hybridization of one of the two Mus pseudogenes, Hbb-bh3, to genomic blots from Peromyscus reveals that it has a homologous counterpart in Peromyscus. Homologous genes to the two gamma-like Mus genes, Hbb-bhO and Hbb-bhl, are also found in Peromyscus. The strong hybridization between the Hbb-bhl genes and significant nucleotide similarity between the Hbb-bhO genes suggest that both pairs are important for the ontogeny of these mice although no known product has been identified for the Hbb-bhO genes. The presence of Hbb-bhO and Hbb-bhl in Peromyscus suggests that the duplication that created this related gene set occurred before the two lineages diverged. A single gene for Hbb-y has been isolated from Peromyscus. The adult region in Peromyscus has undergone significant divergence from the same region in Mus, having three rather than two adult genes, the acquisition of at least 15 kb of extra DNA relative to Mus, and possibly the loss of the Hbb-bh2 pseudogene. The nonadult region of the complex, in contrast, contains the same set of genes apparently distributed over the same amount of DNA as in the Mus beta-globin complex. This observation suggests that the embryonic region of the complex is more evolutionarily stable than the adult region.
Padgett, RW, St Johnston RD, Gelbart WM.  1987.  A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-β family. Nature. 325:81-4. AbstractWebsite
The decapentaplegic gene complex (DPP-C) has been implicated in several events in pattern formation during Drosophila development. During embryogenesis, the DPP-C participates in the establishment of dorsal-ventral specification. Later, it is required for the correct morphogenesis of the imaginal disks, which will form much of the adult epidermis. We have undertaken a molecular analysis of the DPP-C to determine what role it plays in positional information. It appears to be a large genetic unit (greater than 40 kilobases (kb] consisting mostly of cis-regulatory information controlling the expression of a set of overlapping transcripts that differ at their 5' ends, but share the bulk of their transcribed sequences. Here, we describe the sequence analysis of two complementary DNAs comprising 4.0 kb of a 4.5-kb transcript. The C-terminus of the protein thereby deduced exhibits strong sequence homology (25-38% amino-acid identity) to the C-termini of a class of mammalian proteins that includes transforming growth factor-beta (TGF-beta), inhibin and Müllerian inhibiting substance (MIS). These proteins act on target cells to produce a variety of responses, such as stimulation or inhibition of cell division or differentiation. The homology suggests that the DPP-C protein contributes to correct morphogenesis as a secreted factor involved in the differential regulation of cell growth. This is the first report of a member of the TGF-beta gene family in a non-mammalian organism, and indicates that one or more members of this gene family existed before arthropod and vertebrate lineages diverged.
1988
McKim, KS, Howell AM, Rose AM.  1988.  The effects of translocations on recombination frequency in Caenorhabditis elegans. Genetics. 120:987-1001.
Kirihara, JA, Hunsperger JP, Mahoney WC, Messing JW.  1988.  Differential expression of a gene for a methionine-rich storage protein in maize. Molecular & general genetics : MGG. 211:477-84. AbstractWebsite
A methionine-rich 10 kDa zein storage protein from maize was isolated and the sequence of the N-terminal 30 amino acids was determined. Based on the amino acid sequence, two mixed oligonucleotides were synthesized and used to probe a maize endosperm cDNA library. A full-length cDNA clone encoding the 10 kDa zein was isolated by this procedure. The nucleotide sequence of the cDNA clone predicts a polypeptide of 129 amino acids, preceded by a signal peptide of 21 amino acids. The predicted polypeptide is unique in its extremely high content of methionine (22.5%). The maize inbred line BSSS-53, which has increased seed methionine due to overproduction of this protein, was compared to W23, a standard inbred line. Northern blot analysis showed that the relative RNA levels for the 10 kDa zein were enhanced in developing seeds of BSSS-53, providing a molecular basis for the overproduction of the protein. Southern blot analysis indicated that there are one or two 10 kDa zein genes in the maize genome.
Kirihara, JA, Petri JB, Messing J.  1988.  Isolation and sequence of a gene encoding a methionine-rich 10-kDa zein protein from maize. Gene. 71:359-70. AbstractWebsite
We have isolated the gene encoding a methionine-rich 10-kDa zein protein from a lambda EMBL3 maize genomic 'mini' library of the inbred line BSSS-53 and determined its nucleotide sequence. The sequence matches perfectly with a cDNA clone from the inbred line W22 (which has the same restriction fragment length polymorphism as many inbred lines tested) indicating that we have isolated a functional storage protein gene that is very conserved in maize. This comparison also excludes any splicing of any precursor mRNA and therefore any presence of introns. A number of potential regulatory sequences have been located in the flanking regions. The 10-kDa-zein gene represents the last size class in the zein multigene family to be characterized. Its structure allows us now to re-examine the relationship of all the zein proteins and also to compare the structure of a new class of storage proteins that are rich in methionine, an essential amino acid in livestock fodder.
Padgett, RW, Hutchison CA, Edgell MH.  1988.  The F-type 5' motif of mouse L1 elements: a major class of L1 termini similar to the A-type in organization but unrelated in sequence. Nucleic Acids Res. 16:739-49. AbstractWebsite
It has previously been shown that the L1 family in the mouse (L1Md) contains two alternative 5' ends called the A- and F-type sequences (1,2). We show here that the F-type element is a major class of murine L1 elements and report on the details of organization of the 5' motif of these F-type elements. Although the A- and F-type 5' sequences share no detectable sequence homology the organization of an F-type 5' end is strikingly similar to that of an A-type. That is, the F-type 5' sequences consist of a tandem array of a small number of 206 bp monomers while the A-type 5' motif consists of a tandem array of 208 bp monomers. All of the A-type elements characterized to date have a truncated monomer at the 5' end of the array. Many of the F-type elements are also terminated at the 5' end by a truncated copy but unlike the A-type elements some F-type elements terminate with a monomer which is within a few nucleotides of being complete. In addition the F-type consensus sequence, in contrast to the A-type sequence, shows homology (70%) to the body of the L1Md starting at the position where the monomer joins the rest of the L1 element.
1989
Ebright, RH, Ebright YW, Gunasekera A.  1989.  Consensus DNA site for the Escherichia coli catabolite gene activator protein (CAP): CAP exhibits a 450-fold higher affinity for the consensus DNA site than for the E. coli lac DNA site.. Nucleic acids research. 17(24):10295-305. Abstract
We have synthesized two 40 base pair DNA fragments; one fragment contains the consensus DNA site for CAP (fragment 'ICAP'); the other fragment contains the E. coli lac promoter DNA site for CAP (fragment 'LCAP'). We have investigated the binding of CAP to the two DNA fragments using the nitrocellulose filter binding assay. Under standard conditions [( NaCl] = 200 mM, pH = 7.3), CAP exhibits a 450-fold higher affinity for ICAP than for LCAP. The salt dependence of the binding equilibrium indicates that CAP makes eight ion pairs with ICAP, but only six ion pairs with LCAP. Approximately half of the difference in binding free energy for interaction of CAP with ICAP vs. LCAP is attributable to this difference in ion-pair formation. The pH dependence of the binding equilibrium indicates that the eight CAP-ICAP ion pairs and the six CAP-LCAP ion pairs do not involve His residues of CAP.
1990
Ebright, RH, Ebright YW, Pendergrast PS, Gunasekera A.  1990.  Conversion of a helix-turn-helix motif sequence-specific DNA binding protein into a site-specific DNA cleavage agent.. Proceedings of the National Academy of Sciences of the United States of America. 87(8):2882-6. Abstract
Escherichia coli catabolite gene activator protein (CAP) is a helix-turn-helix motif sequence-specific DNA binding protein [de Crombrugghe, B., Busby, S. & Buc, H. (1984) Science 224, 831-838; and Pabo, C. & Sauer, R. (1984) Annu. Rev. Biochem. 53, 293-321]. In this work, CAP has been converted into a site-specific DNA cleavage agent by incorporation of the chelator 1,10-phenanthroline at amino acid 10 of the helix-turn-helix motif. [(N-Acetyl-5-amino-1,10-phenanthroline)-Cys178]CAP binds to a 22-base-pair DNA recognition site with Kobs = 1 x 10(8) M-1. In the presence of Cu(II) and reducing agent, [(N-acetyl-5-amino-1,10-phenanthroline)-Cys178]CAP cleaves DNA at four adjacent nucleotides on each DNA strand within the DNA recognition site. The DNA cleavage reaction has been demonstrated using 40-base-pair and 7164-base-pair DNA substrates. The DNA cleavage reaction is not inhibited by dam methylation of the DNA substrate. Such semisynthetic site-specific DNA cleavage agents have potential applications in chromosome mapping, cloning, and sequencing.
Gunasekera, A, Ebright YW, Ebright RH.  1990.  DNA-sequence recognition by CAP: role of the adenine N6 atom of base pair 6 of the DNA site.. Nucleic acids research. 18(23):6853-6. Abstract
Two similar, but not identical, models have been proposed for the amino acid-base pair contacts in the CAP-DNA complex ('Model I,' Weber, I. and Steitz, T., Proc. Natl. Acad. Sci. USA, 81, 3973-3977, 1984; 'Model II,' Ebright, et al., Proc. Natl. Acad. Sci. USA, 81, 7274-7278, 1984). One difference between the two models involves Glu181 of CAP. Model I predicts that Glu181 of CAP makes two specificity determining contacts: one H-bond with the cytosine N4 atom of G:C at base pair 7 of the DNA half site, and one H-bond with the adenine N6 atom of T:A at base pair 6 of the DNA half site. In contrast, Model II predicts that Glu181 makes only one specificity determining contact: one H-bond with the cytosine N4 atom of G:C at base pair 7 of the DNA half site. In the present work, we show that replacement of T:A at base pair 6 of the DNA half site by T:N6-methyl-adenine has no, or almost no, effect on the binding of CAP. We conclude, contrary to Model I, that Glu181 of CAP makes no contact with the adenine N6 atom of base pair 6 of the DNA half site.
Zhang, XP, Ebright RH.  1990.  Substitution of 2 base pairs (1 base pair per DNA half-site) within the Escherichia coli lac promoter DNA site for catabolite gene activator protein places the lac promoter in the FNR regulon.. The Journal of biological chemistry. 265(21):12400-3. Abstract
The consensus DNA site for Escherichia coli catabolite gene activator protein (CAP) is 5'-AAATGTGATCTAGATCACATTT-3'. The proposed consensus DNA site for E. coli FNR is 5'-AAATTTGATATATATCAAATTT-3'. In this report, we show that substitution of 2 base pairs (1 base pair per DNA half-site) within the E. coli lac DNA site for CAP suffices to remove the lac promoter from the CAP regulon and to place the lac promoter in the FNR regulon. FNR stimulates transcription of the derivative of the lac promoter having G:C----T:A substitutions at base pair 5 each DNA half-site (13-fold stimulation). FNR does not stimulate transcription of the wild-type lac promoter, or of derivatives of the lac promoter having G:C----A:T or G:C----C:G substitutions at base pair 5 of each DNA half-site. Stimulation of transcription is strictly dependent on anaerobiosis. FNR-stimulated transcription initiates at the same base pair as does CAP-dependent transcription of the wild-type lac promoter.
Zhang, XP, Ebright RH.  1990.  Identification of a contact between arginine-180 of the catabolite gene activator protein (CAP) and base pair 5 of the DNA site in the CAP-DNA complex.. Proceedings of the National Academy of Sciences of the United States of America. 87(12):4717-21. Abstract
We have used site-directed mutagenesis to replace amino acid 1 of the recognition alpha-helix of the catabolite gene activator protein (CAP), Arg-180, with glycine and with alanine. Substitution of Arg-180 of CAP eliminated specificity between G.C, A.T, C.G, and T.A at base pair 5 of the DNA half-site. The effect was position-specific: substitution of Arg-180 did not eliminate specificity between G.C, A.T, C.G, and T.A at base pair 7 of the DNA half-site. We conclude, in agreement with the model for the structure of the CAP-DNA complex [Weber, I. & Steitz, T. (1984) Proc. Natl. Acad. Sci. USA 81, 3973-3977; and Ebright, R., Cossart, P., Gicquel-Sanzey, B. & Beckwith, J. (1984) Proc. Natl. Acad. Sci. USA 81, 7274-7278], that Arg-180 of CAP makes a specificity-determining contact with base pair 5 of the DNA half-site in the CAP-DNA complex. The identification of the contact by Arg-180 in this report, in conjunction with the identification of the contact by Glu-181 in a previous report [Ebright, R., Cossart, P., Gicquel-Sanzey, B. & Beckwith, J. (1984) Nature (London) 311, 232-235], provides information sufficient to define the orientation of the helix-turn-helix motif of CAP with respect to DNA in the CAP-DNA complex.
Ebright, RH, Gunasekera A, Zhang XP, Kunkel TA, Krakow JS.  1990.  Lysine 188 of the catabolite gene activator protein (CAP) plays no role in specificity at base pair 7 of the DNA half site.. Nucleic acids research. 18(6):1457-64. Abstract
Two similar, but not identical, models have been proposed for the amino acid-base pair contacts in the CAP-DNA complex ('model I,' Weber, I. and Steitz, T., Proc. Natl. Acad. Sci. USA, 81, 3973-3977, 1984; 'model II,' Ebright, et al., Proc. Natl. Acad. Sci. USA, 81, 7274-7278, 1984). The most important difference between the two models involves Lys188 of CAP. Model I predicts that Lys188 of CAP makes a specificity determining contact with base pair 7 of the DNA half site. In contrast, model II predicts that Lys188 makes no contact with base pair 7 of the DNA half site. In the present work, we have used site-directed mutagenesis to replace Lys188 of CAP by Asn, an amino acid unable to make the putative contact. We have assessed the specificities of the following proteins, both in vitro and in vivo: wild-type CAP, [Asn188]CAP, [Val181]CAP, and [Val181;Asn188]CAP. The results indicate that Lys188 makes no contribution to specificity at base pair 7 of the DNA half site. We propose, contrary to model I, that Lys188 makes no contact with base pair 7 of the DNA half site.
McKim, KS, Rose AM.  1990.  Chromosome I duplications in Caenorhabditis elegans. Genetics. 124:115-32.Website
St Johnston, RD, Hoffmann FM, Blackman RK, Segal D, Grimaila R, Padgett RW, Irick HA, Gelbart WM.  1990.  Molecular organization of the decapentaplegic gene in Drosophila melanogaster. Genes Dev. 4:1114-27. AbstractWebsite
The decapentaplegic (dpp) locus of Drosophila melanogaster is a greater than 55 kb genetic unit required for proper pattern formation during the embryonic and imaginal development of the organism. We have proposed that these morphogenetic functions result from the action of a secreted transforming growth factor-beta (TGF-beta)-related protein product encoded by dpp. In this paper we localize 60 mutations on the molecular map of dpp. The positions of these mutations cluster according to phenotypic class, identifying the locations of specific dpp functions. By Northern and cDNA analysis, we characterize five overlapping dpp transcripts. On the basis of the locations of the overlaps relative to a previously sequenced cDNA, it is likely that these transcripts all encode similar or identical polypeptides. We propose that the bulk of dpp DNA consists of extensive arrays of cis-regulatory information. The large (greater than 25-kb) 3' cis-regulatory region represents a novel feature of dpp gene organization
1991
Heidecker, G, Chaudhuri S, Messing J.  1991.  Highly clustered zein gene sequences reveal evolutionary history of the multigene family. Genomics. 10:719-32. AbstractWebsite
We have determined the nucleotide sequences of zein cDNA clones ZG14, ZG15, and ZG35. The three clones have 95 to 98% homology to the previously published sequence of clone A20, and 84% homology to sequences of the zein subfamily A30. Comparison of all sequences of the A30 and A20 subfamilies highlights the following features: the 5' nontranslated regions are 68 and 57 nucleotides in length for the A20- and A30-like mRNAs, respectively, and contain at least three repeats of the consensus sequence ACGAACAAta/gG; the majority of these genes are highly clustered as judged from pulsed-field gel electrophoresis of high molecular weight maize DNA. Furthermore, we discuss a model for the evolution of the multigene family which stresses the special importance of unequal crossingover and gene conversion in this system.
Messing, J, Fisher H.  1991.  Maternal effect on high methionine levels in hybrid corn. Journal of biotechnology. 21:229-237.Website
Cruz-Alvarez, M, Kirihara JA, Messing J.  1991.  Post-transcriptional regulation of methionine content in maize kernels. Molecular & general genetics : MGG. 225:331-9. AbstractWebsite
Message levels for a methionine-rich 10 kDa zein were determined in three inbred lines of maize and their reciprocal crosses at various stages during endosperm development. Inbred line BSSS-53, which overexpresses the 10 kDa protein in mature kernels, was shown to have higher mRNA levels in developing endosperm, as compared to inbred lines W23 and W64A. Differences in mRNA levels could not be explained by differences in transcription rate of the 10 kDa zein gene, indicating differential post-transcriptional regulation of this storage protein in the different inbred lines analyzed. Among progeny segregating for the BSSS-53 allele of the 10 kDa zein structural gene Zps10/(22), mRNA levels are independent of Zps10/(22) segregation, indicating that post-transcriptional regulation of mRNA levels takes place via a trans-acting mechanism. In the same progeny, mRNA levels are also independent of allelic segregation of the regulatory locus Zpr10/(22). Thus, the trans-acting factor encoded by Zpr10/(22) determines accumulation of 10 kDa zein at a translational or post-translational step. Multiple trans-acting factors are therefore involved in post-transcriptional regulation of the methionine-rich 10 kDa zein.
Ebright, RH.  1991.  Identification of amino acid-base pair contacts by genetic methods.. Methods in enzymology. 208:620-40.
Zhang, XP, Gunasekera A, Ebright YW, Ebright RH.  1991.  Derivatives of CAP having no solvent-accessible cysteine residues, or having a unique solvent-accessible cysteine residue at amino acid 2 of the helix-turn-helix motif.. Journal of biomolecular structure & dynamics. 9(3):463-73. Abstract
The Escherichia coli catabolite gene activator protein (CAP) is a helix-turn-helix motif sequence-specific DNA binding protein. CAP contains a unique solvent-accessible cysteine residue at amino acid 10 of the helix-turn-helix motif. In published work, we have constructed a prototype semi-synthetic site-specific DNA cleavage agent from CAP by use of cysteine-specific chemical modification to incorporate a nucleolytic chelator-metal complex at amino acid 10 of the helix-turn-helix motif [Ebright, R., Ebright, Y., Pendergrast, P.S. and Gunasekera, A., Proc. Natl. Acad. Sci. USA 87, 2882-2886 (1990)]. Construction of second-generation semi-synthetic site-specific DNA cleavage agents from CAP requires the construction of derivatives of CAP having unique solvent-accessible cysteine residues at sites within CAP other than amino acid 10 of the helix-turn-helix motif. In the present work, we have constructed and characterized two derivatives of CAP having no solvent-accessible cysteine residues: [Ser178]CAP and [Leu178]CAP. In addition, in the present work, we have constructed and characterized one derivative of CAP having a unique solvent-accessible cysteine residue at amino acid 2 of the helix-turn-helix motif: [Cys170;Ser178]CAP.
Zhou, YH, Zhang XP, Ebright RH.  1991.  Random mutagenesis of gene-sized DNA molecules by use of PCR with Taq DNA polymerase.. Nucleic acids research. 19(21):6052.
Shin, JA, Ebright RH, Dervan PB.  1991.  Orientation of the Lac repressor DNA binding domain in complex with the left lac operator half site characterized by affinity cleaving.. Nucleic acids research. 19(19):5233-6. Abstract
Lac repressor (LacR) is a helix-turn-helix motif sequence-specific DNA binding protein. Based on proton NMR spectroscopic investigations, Kaptein and co-workers have proposed that the helix-turn-helix motif of LacR binds to DNA in an orientation opposite to that of the helix-turn-helix motifs of lambda repressor, lambda cro, 434 repressor, 434 cro, and CAP [Boelens, R., Scheek, R., van Boom, J. and Kaptein, R., J. Mol. Biol. 193, 1987, 213-216]. In the present work, we have determined the orientation of the helix-turn-helix motif of LacR in the LacR-DNA complex by the affinity cleaving method. The DNA cleaving moiety EDTA.Fe was attached to the N-terminus of a 56-residue synthetic protein corresponding to the DNA binding domain of LacR. We have formed the complex between the modified protein and the left DNA half site for LacR. The locations of the resulting DNA cleavage positions relative to the left DNA half site provide strong support for the proposal of Kaptein and co-workers.