Publications

Export 3 results:
Sort by: Author [ Title  (Asc)] Type Year
Filters: First Letter Of Title is S  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Gates, C, Ananyev GM, Dismukes C.  2016.  The strontium inorganic mutant of the water oxidizing center (CaMn4O5) of PSII improves WOC efficiency but slows electron flux through the terminal acceptors.. Biochim Biophys Acta.. 1857(9):1550-1560. Abstract
Herein we extend prior studies of biosynthetic strontium replacement of calcium in PSII-WOC core particles to characterize whole cells. Previous studies of Thermosynechococcus elongatus found a lower rate of light-saturated O2 from isolated PSII-WOC(Sr) cores and 5–8 × slower rate of oxygen release. We find similar properties in whole cells, and show it is due to a 20% larger Arrhenius activation barrier for O2 evolution. Cellular adaptation to the sluggish PSII-WOC(Sr) cycle occurs in which flux through the QAQB acceptor gate becomes limiting for turnover rate in vivo. Benzoquinone derivatives that bind to QB site remove this kinetic chokepoint yielding 31% greater O2 quantum yield (QY) of PSII-WOC(Sr) vs. PSII-WOC(Ca). QY and efficiency of the WOC(Sr) catalytic cycle are greatly improved at low light flux, due to fewer misses and backward transitions and 3-fold longer lifetime of the unstable S3 state, attributed to greater thermodynamic stabilization of the WOC(Sr) relative to the photoactive tyrosine YZ. More linear and less cyclic electron flow through PSII occurs per PSII-WOC(Sr). The organismal response to the more active PSII centers in Sr-grown cells at 45 °C is to lower the number of active PSII-WOC per Chl, producing comparable oxygen and energy per cell. We conclude that redox and protonic energy fluxes created by PSII are primary determinants for optimal growth rate of T. elongatus. We further conclude that the (Sr-favored) intermediate-spin S = 5/2 form of the S2 state is the active form in the catalytic cycle relative to the low-spin S = 1/2 form.
Deibert, BJ, Zhang J, Smith PF, Chapman KW, Rangan S, Banerjee D, Tan K, Wang H, Pasguale N, Chen F et al..  2015.  Surface and Structural Investigation of a MnOx Birnessite-Type Water Oxidation Catalyst Formed under Photocatalytic Conditions. Chemistry. 21(40):14218-14228. Abstract
Catalytically active MnOx species have been reported to form in situ from various Mn-complexes during electrocatalytic and solution-based water oxidation when employing cerium(IV) ammonium ammonium nitrate (CAN) oxidant as a sacrificial reagent. The full structural characterization of these oxides may be complicated by the presence of support material and lack of a pure bulk phase. For the first time, we show that highly active MnOx catalysts form without supports in situ under photocatalytic conditions. Our most active (4)MnOx catalyst (∼0.84 mmol O2  mol Mn(-1) s(-1)) forms from a Mn4O4 bearing a metal-organic framework. (4)MnOx is characterized by pair distribution function analysis (PDF), Raman spectroscopy, and HR-TEM as a disordered, layered Mn-oxide with high surface area (216 m(2) g(-1)) and small regions of crystallinity and layer flexibility. In contrast, the (S)MnOx formed from Mn(2+) salt gives an amorphous species of lower surface area (80 m(2) g(-1)) and lower activity (∼0.15 mmol O2  mol Mn(-1) s(-1)). We compare these catalysts to crystalline hexagonal birnessite, which activates under the same conditions. Full deconvolution of the XPS Mn2p3/2 core levels detects enriched Mn(3+) and Mn(2+) content on the surfaces, which indicates possible disproportionation/comproportionation surface equilibria.