Filters: First Letter Of Title is R  [Clear All Filters]
A B C D E F G H I J K L M N O P Q [R] S T U V W X Y Z   [Show ALL]
Glodowski, DR, Chen CC, Schaefer H, Grant BD, Rongo C.  2007.  RAB-10 regulates glutamate receptor recycling in a cholesterol-dependent endocytosis pathway. Mol Biol Cell. 18:4387-96. AbstractWebsite
Regulated endocytosis of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) is critical for synaptic plasticity. However, the specific combination of clathrin-dependent and -independent mechanisms that mediate AMPAR trafficking in vivo have not been fully characterized. Here, we examine the trafficking of the AMPAR subunit GLR-1 in Caenorhabditis elegans. GLR-1 is localized on synaptic membranes, where it regulates reversals of locomotion in a simple behavioral circuit. Animals lacking RAB-10, a small GTPase required for endocytic recycling of intestinal cargo, are similar in phenotype to animals lacking LIN-10, a postsynaptic density 95/disc-large/zona occludens-domain containing protein: GLR-1 accumulates in large accretions and animals display a decreased frequency of reversals. Mutations in unc-11 (AP180) or itsn-1 (Intersectin 1), which reduce clathrin-dependent endocytosis, suppress the lin-10 but not rab-10 mutant phenotype, suggesting that LIN-10 functions after clathrin-mediated endocytosis. By contrast, cholesterol depletion, which impairs lipid raft formation and clathrin-independent endocytosis, suppresses the rab-10 but not the lin-10 phenotype, suggesting that RAB-10 functions after clathrin-independent endocytosis. Animals lacking both genes display additive GLR-1 trafficking defects. We propose that RAB-10 and LIN-10 recycle AMPARs from intracellular endosomal compartments to synapses along distinct pathways, each with distinct sensitivities to cholesterol and the clathrin-mediated endocytosis machinery.
Zhang, D, Dubey J, Koushika SP, Rongo C.  2016.  RAB-6.1 and RAB-6.2 Promote Retrograde Transport in C. elegans.. PloS one. 11(2):e0149314. Abstract
Retrograde transport is a critical mechanism for recycling certain membrane cargo. Following endocytosis from the plasma membrane, retrograde cargo is moved from early endosomes to Golgi followed by transport (recycling) back to the plasma membrane. The complete molecular and cellular mechanisms of retrograde transport remain unclear. The small GTPase RAB-6.2 mediates the retrograde recycling of the AMPA-type glutamate receptor (AMPAR) subunit GLR-1 in C. elegans neurons. Here we show that RAB-6.2 and a close paralog, RAB-6.1, together regulate retrograde transport in both neurons and non-neuronal tissue. Mutants for rab-6.1 or rab-6.2 fail to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. Loss of both rab-6.1 and rab-6.2 results in an additive effect on GLR-1 retrograde recycling, indicating that these two C. elegans Rab6 isoforms have overlapping functions. MIG-14 (Wntless) protein, which undergoes retrograde recycling, undergoes a similar degradation in intestinal epithelia in both rab-6.1 and rab-6.2 mutants, suggesting a broader role for these proteins in retrograde transport. Surprisingly, MIG-14 is localized to separate, spatially segregated endosomal compartments in rab-6.1 mutants compared to rab-6.2 mutants. Our results indicate that RAB-6.1 and RAB-6.2 have partially redundant functions in overall retrograde transport, but also have their own unique cellular- and subcellular functions.
Zhang, D, Isack NR, Glodowski DR, Liu J, Chen CC, Xu XZ, Grant BD, Rongo C.  2012.  RAB-6.2 and the retromer regulate glutamate receptor recycling through a retrograde pathway.. The Journal of Cell Biology. 196:85-101. AbstractWebsite
Regulated membrane trafficking of AMPA-type glutamate receptors (AMPARs) is a key mechanism underlying synaptic plasticity, yet the pathways used by AMPARs are not well understood. In this paper, we show that the AMPAR subunit GLR-1 in Caenorhabditis elegans utilizes the retrograde transport pathway to regulate AMPAR synaptic abundance. Mutants for rab-6.2, the retromer genes vps-35 and snx-1, and rme-8 failed to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. In contrast, expression of constitutively active RAB-6.2 drove the retrograde transport of GLR-1 from dendrites back to cell body Golgi. We also find that activated RAB-6.2 bound to and colocalized with the PDZ/phosphotyrosine binding domain protein LIN-10. RAB-6.2 recruited LIN-10. Moreover, the regulation of GLR-1 transport by RAB-6.2 required LIN-10 activity. Our results demonstrate a novel role for RAB-6.2, its effector LIN-10, and the retromer complex in maintaining synaptic strength by recycling AMPARs along the retrograde transport pathway.
Ishikawa, HO, Xu A, Ogura E, Manning G, Irvine KD.  2012.  The Raine Syndrome Protein FAM20C Is a Golgi Kinase That Phosphorylates Bio-Mineralization Proteins.. PLoS One. 7:e42988. AbstractWebsite
Raine syndrome is caused by mutations in FAM20C, which had been reported to encode a secreted component of bone and teeth. We found that FAM20C encodes a Golgi-localized protein kinase, distantly related to the Golgi-localized kinase Four-jointed. Drosophila also encode a Golgi-localized protein kinase closely related to FAM20C. We show that FAM20C can phosphorylate secreted phosphoproteins, including both Casein and members of the SIBLING protein family, which modulate biomineralization, and we find that FAM20C phosphorylates a biologically active peptide at amino acids essential for inhibition of biomineralization. We also identify autophosphorylation of FAM20C, and characterize parameters of FAM20C's kinase activity, including its Km, pH and cation dependence, and substrate specificity. The biochemical properties of FAM20C match those of an enzymatic activity known as Golgi casein kinase. Introduction of point mutations identified in Raine syndrome patients into recombinant FAM20C impairs its normal localization and kinase activity. Our results identify FAM20C as a kinase for secreted phosphoproteins and establish a biochemical basis for Raine syndrome.
Zhou, YH, Zhang XP, Ebright RH.  1991.  Random mutagenesis of gene-sized DNA molecules by use of PCR with Taq DNA polymerase.. Nucleic acids research. 19(21):6052.
Cesario, J, McKim KS.  2011.  RanGTP is required for meiotic spindle organization and the initiation of embryonic development in Drosophila. J Cell Sci. 124:3797-810. AbstractWebsite
RanGTP is important for chromosome-dependent spindle assembly in Xenopus extracts. Here we report on experiments to determine the role of the Ran pathway on microtubule dynamics in Drosophila oocytes and embryos. Females expressing a dominant-negative form of Ran have fertility defects, suggesting that RanGTP is required for normal fertility. This is not, however, because of a defect in acentrosomal meiotic spindle assembly. Therefore, RanGTP does not appear to be essential or sufficient for the formation of the acentrosomal spindle. Instead, the most important function of the Ran pathway in spindle assembly appears to be in the tapering of microtubules at the spindle poles, which might be through regulation of proteins such as TACC and the HURP homolog, Mars. One consequence of this spindle organization defect is an increase in the nondisjunction of achiasmate chromosomes. However, the meiotic defects are not severe enough to cause the decreased fertility. Reductions in fertility occur because RanGTP has a role in microtubule assembly that is not directly nucleated by the chromosomes. This includes microtubules nucleated from the sperm aster, which are required for pronuclear fusion. We propose that following nuclear envelope breakdown, RanGTP is released from the nucleus and creates a cytoplasm that is activated for assembling microtubules, which is important for processes such as pronuclear fusion. Around the chromosomes, however, RanGTP might be redundant with other factors such as the chromosome passenger complex.
Wu, Y, Messing J.  2012.  Rapid divergence of prolamin gene promoters of maize after gene amplification and dispersal. Genetics. 192:507-19. AbstractWebsite
Seeds have evolved to accommodate complicated processes like senescence, dormancy, and germination. Central to these is the storage of carbohydrates and proteins derived from sugars and amino acids synthesized during photosynthesis. In the grasses, the bulk of amino acids is stored in the prolamin superfamily that specifically accumulates in seed endosperm during senescence. Their promoters contain a conserved cis-element, called prolamin-box (P-box), recognized by the trans-activator P-box binding factor (PBF). Because of the lack of null mutants in all grass species, its physiological role in storage-protein gene expression has been elusive. In contrast, a null mutant of another endosperm-specific trans-activator Opaque2 (O2) has been shown to be required for the transcriptional activation of subsets of this superfamily by binding to the O2 box. Here, we used RNAi to knockdown Pbf expression and found that only 27-kDa gamma- and 22-kDa alpha-zein gene expression were affected, whereas the level of other zeins remained unchanged. Still, transgenic seeds had an opaque seed phenotype. Combination of PbfRNAi and o2 resulted in further reduction of alpha-zein expression. We also tested the interaction of promoters and constitutively expressed PBF and O2. Whereas transgenic promoters could be activated, endogenous promoters appeared to be not accessible to transcriptional activation, presumably due to differential chromatin states. Although analysis of the methylation of binding sites of PBF and O2 correlated with the expression of endogenous 22-kDa alpha-zein promoters, a different mechanism seems to apply to the 27-kDa gamma-zein promoter, which does not undergo methylation changes.
Tang, H, Severinov K, Goldfarb A, Ebright RH.  1995.  Rapid RNA polymerase genetics: one-day, no-column preparation of reconstituted recombinant Escherichia coli RNA polymerase.. Proceedings of the National Academy of Sciences of the United States of America. 92(11):4902-6. Abstract
We present a simple, rapid procedure for reconstitution of Escherichia coli RNA polymerase holoenzyme (RNAP) from individual recombinant alpha, beta, beta', and sigma 70 subunits. Hexahistidine-tagged recombinant alpha subunit purified by batch-mode metal-ion-affinity chromatography is incubated with crude recombinant beta, beta', and sigma 70 subunits from inclusion bodies, and the resulting reconstituted recombinant RNAP is purified by batch-mode metal-ion-affinity chromatography. RNAP prepared by this procedure is indistinguishable from RNAP prepared by conventional methods with respect to subunit stoichiometry, alpha-DNA interaction, catabolite gene activator protein (CAP)-independent transcription, and CAP-dependent transcription. Experiments with alpha (1-235), an alpha subunit C-terminal deletion mutant, establish that the procedure is suitable for biochemical screening of subunit lethal mutants.
Goff, LA, Yang M, Bowers J, Getts RC, Padgett RW, Hart RP.  2005.  Rational probe optimization and enhanced detection strategy for microRNAs using microarrays. RNA biology. 2:93-100. AbstractWebsite
MicroRNAs (miRNAs) are post-transcriptional regulators participating in biological processes ranging from differentiation to carcinogenesis. We developed a rational probe design algorithm and a sensitive labelling scheme for optimizing miRNA microarrays. Our microarray contains probes for all validated miRNAs from five species, with the potential for drawing on species conservation to identify novel miRNAs with homologous probes. These methods are useful for high-throughput analysis of micro RNAs from various sources, and allow analysis with limiting quantities of RNA. The system design can also be extended for use on Luminex beads or on 96-well plates in an ELISA-style assay. We optimized hybridization temperatures using sequence variations on 20 of the probes and determined that all probes distinguish wild-type from 2 nt mutations, and most probes distinguish a 1 nt mutation, producing good selectivity between closely-related small RNA sequences. Results of tissue comparisons on our microarrays reveal patterns of hybridization that agree with results from Northern blots and other methods.
Fu, H, Zheng Z, Dooner HK.  2002.  Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. Proc. Natl. Acad. Sci. U.S.A.. 99:1082–1087. Abstract
Genetic map length and gene number in eukaryotes vary considerably less than genome size, giving rise to the hypothesis that recombination is restricted to genes. The complex genome of maize contains a large fraction of repetitive DNA, composed principally of retrotransposons arranged in clusters. Here, we assess directly the contribution of retrotransposon clusters and genes to genetic length. We first measured recombination across adjacent homozygous genetic intervals on either side of the bronze (bz) locus. We then isolated and characterized two bacterial artificial chromosome clones containing those intervals. Recombination was almost 2 orders of magnitude higher in the distal side, which is gene-dense and lacks retrotransposons, than in the proximal side, which is gene-poor and contains a large cluster of methylated retrotransposons. We conclude that the repetitive retrotransposon DNA in maize, which constitutes the bulk of the genome, most likely contributes little if any to genetic length.
Salse, J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C.  2009.  Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci U S A. 106:14908-13. AbstractWebsite
Paleogenomics seeks to reconstruct ancestral genomes from the genes of today's species. The characterization of paleo-duplications represented by 11,737 orthologs and 4,382 paralogs identified in five species belonging to three of the agronomically most important subfamilies of grasses, that is, Ehrhartoideae (rice) Panicoideae (sorghum, maize), and Pooideae (wheat, barley), permitted us to propose a model for an ancestral genome with a minimal size of 33.6 Mb structured in five proto-chromosomes containing at least 9,138 predicted proto-genes. It appears that only four major evolutionary shuffling events (alpha, beta, gamma, and delta) explain the divergence of these five cereal genomes during their evolution from a common paleo-ancestor. Comparative analysis of ancestral gene function with rice as a reference indicated that five categories of genes were preferentially modified during evolution. Furthermore, alignments between the five grass proto-chromosomes and the recently identified seven eudicot proto-chromosomes indicated that additional very active episodes of genome rearrangements and gene mobility occurred during angiosperm evolution. If one compares the pace of primate evolution of 90 million years (233 species) to 60 million years of the Poaceae (10,000 species), change in chromosome structure through speciation has accelerated significantly in plants.
McNeely, K, Xu Y, Bennette N, Bryant DA, Dismukes CG.  2010.  Redirecting Reductant Flux into Hydrogen Production via Metabolic Engineering of Fermentative Carbon Metabolism in a Cyanobacterium. Appl. Environ. Microbiol.. 76:5032-5038. AbstractWebsite
Some aquatic microbial oxygenic photoautotrophs (AMOPs) make hydrogen (H2), a carbon-neutral, renewable product derived from water, in low yields during autofermentation (anaerobic metabolism) of intracellular carbohydrates previously stored during aerobic photosynthesis. We have constructed a mutant (the ldhA mutant) of the cyanobacterium Synechococcus sp. strain PCC 7002 lacking the enzyme for the NADH-dependent reduction of pyruvate to D-lactate, the major fermentative reductant sink in this AMOP. Both nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) metabolomic methods have shown that autofermentation by the ldhA mutant resulted in no D-lactate production and higher concentrations of excreted acetate, alanine, succinate, and hydrogen (up to 5-fold) compared to that by the wild type. The measured intracellular NAD(P)(H) concentrations demonstrated that the NAD(P)H/NAD(P)+ ratio increased appreciably during autofermentation in the ldhA strain; we propose this to be the principal source of the observed increase in H2 production via an NADH-dependent, bidirectional [NiFe] hydrogenase. Despite the elevated NAD(P)H/NAD(P)+ ratio, no decrease was found in the rate of anaerobic conversion of stored carbohydrates. The measured energy conversion efficiency (ECE) from biomass (as glucose equivalents) converted to hydrogen in the ldhA mutant is 12%. Together with the unimpaired photoautotrophic growth of the ldhA mutant, these attributes reveal that metabolic engineering is an effective strategy to enhance H2 production in AMOPs without compromising viability.
Xu, A, Lei L, Irvine KD.  2005.  Regions of Drosophila Notch that contribute to ligand binding and the modulatory influence of Fringe. The Journal of biological chemistry. 280:30158-65. AbstractWebsite
Two glycosyltransferases that transfer sugars to epidermal growth factor (EGF) domains, OFUT1 and Fringe, regulate Notch signaling. To characterize the impact of glycosylation at the 23 consensus O-fucose sites in Drosophila Notch, we conducted deletion mapping and site-specific mutagenesis and then assayed the binding of soluble forms of Notch to cell-surface ligands. Our results support the conclusion that EGF11 and EGF12 are essential for ligand binding, but indicate that other EGF domains also make substantial contributions to ligand binding. Characterization of Notch deletion constructs and O-fucose site mutants further revealed that no single site or region can account for the influence of Fringe on Notch-ligand binding. Additionally, we observed an influence of Fringe on a Notch fragment including only 4 of its 36 EGF domains (EGF10-13). Together, our observations imply that glycosylation influences Notch-ligand interactions through a distributive mechanism that involves local interactions with multiple EGF domains and led us to suggest a structural model for how Notch interacts with its ligands.
Gelfand, B, Mead J, Bruning A, Apostolopoulos N, Tadigotla V, Nagaraj V, Sengupta AM, Vershon AK.  2011.  Regulated Antisense Transcription Controls Expression of Cell-type-specific Genes in Yeast. Mol Cell Biol. 31:1701-1709. Abstract
Transcriptome profiling studies have recently uncovered a large number of noncoding RNA transcripts (ncRNAs) in eukaryotic organisms, and there is growing interest in their role in the cell. For example, in haploid Saccharomyces cerevisiae cells, the expression of an overlapping antisense ncRNA, referred to here as RME2 (Regulator of Meiosis 2), prevents IME4 expression. In diploid cells, the a1-α2 complex represses the transcription of RME2, allowing IME4 to be induced during meiosis. In this study we show that antisense transcription across the IME4 promoter region does not block transcription factors from binding and is not required for repression. Mutational analyses found that sequences within the IME4 open reading frame (ORF) are required for the repression mediated by RME2 transcription. These results support a model where transcription of RME2 blocks the elongation of the full-length IME4 transcript but not its initiation. We have found that another antisense transcript, called RME3, represses ZIP2 in a cell-type-specific manner. These results suggest that regulated antisense transcription may be a widespread mechanism for the control of gene expression and may account for the roles of some of the previously uncharacterized ncRNAs in yeast.
Rongo, C, Lehmann R.  1996.  Regulated synthesis, transport and assembly of the Drosophila germ plasm. Trends Genet. 12:102-9. AbstractWebsite
Germ cells are set aside during early development and, in many organisms (including Drosophila melanogaster, Caenorhabditis elegans and Xenopus laevis), they form in a unique cytoplasm, termed the germ plasm. The germ plasm is synthesized during oogenesis, and the initial polarization of the oocyte is likely to determine where the germ plasm will form within the egg cell. Although we do not know how the fate of germ cells is specified in any organism, recent genetic analysis in Drosophila has identified the TGF-alpha homolog gurken as the signal involved in the initial polarization of the oocyte. These results imply that the limiting steps in the assembly of the germ plasm are localization of the OSK RNA and regulated synthesis of the OSK protein, encoded by oskar, which are components of the germ plasm.
Rogulja, D, Irvine KD.  2005.  Regulation of cell proliferation by a morphogen gradient. Cell. 123:449-61. AbstractWebsite
One model to explain the relationship between patterning and growth during development posits that growth is regulated by the slope of morphogen gradients. The Decapentaplegic (DPP) morphogen controls growth in the Drosophila wing, but the slope of the DPP activity gradient has not been shown to influence growth. By employing a method for spatial, temporal, and quantitative control over gene expression, we show that the juxtaposition of cells perceiving different levels of DPP signaling is essential for medial-wing-cell proliferation and can be sufficient to promote the proliferation of cells throughout the wing. Either activation or inhibition of the DPP pathway in clones at levels distinct from those in surrounding cells stimulates nonautonomous cell proliferation. Conversely, uniform activation of the DPP pathway inhibits cell proliferation in medial wing cells. Our observations provide a direct demonstration that the slope of a morphogen gradient regulates growth during development.
Reddy, BVVG, Irvine KD.  2011.  Regulation of Drosophila glial cell proliferation by Merlin-Hippo signaling.. Development. 138:5201-5212.
Nagornykh, M, Zakharova M, Protsenko A, Bogdanova E, Solonin A, Severinov K.  2011.  The regulation of gene expression in the Eco29kI restriction-modification system. . Nucleic Acids Res.. 39:4653-4663.
Roberts, AF, Gumienny TL, Gleason RJ, Wang H, Padgett RW.  2010.  Regulation of genes affecting body size and innate immunity by the DBL-1/BMP-like pathway in Caenorhabditis elegans.. BMC Dev Biol.. 10:61.
Reddy, BVVG, Irvine KD.  2013.  Regulation of Hippo Signaling by EGFR-MAPK Signaling through Ajuba Family Proteins.. Developmental Cell. 24:459-471. AbstractWebsite
EGFR and Hippo signaling pathways both control growth and, when dysregulated, contribute to tumorigenesis. We find that EGFR activates the Hippo pathway transcription factor Yorkie and demonstrate that Yorkie is required for the influence of EGFR on cell proliferation in Drosophila. EGFR regulates Yorkie through the influence of its Ras-MAPK branch on the Ajuba LIM protein Jub. Jub is epistatic to EGFR and Ras for Yorkie regulation, Jub is subject to MAPK-dependent phosphorylation, and EGFR-Ras-MAPK signaling enhances Jub binding to the Yorkie kinase Warts and the adaptor protein Salvador. An EGFR-Hippo pathway link is conserved in mammals, as activation of EGFR or RAS activates the Yorkie homolog YAP, and EGFR-RAS-MAPK signaling promotes phosphorylation of the Ajuba family protein WTIP and also enhances WTIP binding to the Warts and Salvador homologs LATS and WW45. Our observations implicate the Hippo pathway in EGFR-mediated tumorigenesis and identify a molecular link between these pathways.
Sun, G, Irvine KD.  2011.  Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors. Developmental biology. 350:139-51. AbstractWebsite
When cells undergo apoptosis, they can stimulate the proliferation of nearby cells, a process referred to as compensatory cell proliferation. The stimulation of proliferation in response to tissue damage or removal is also central to epimorphic regeneration. The Hippo signaling pathway has emerged as an important regulator of growth during normal development and oncogenesis from Drosophila to humans. Here we show that induction of apoptosis in the Drosophila wing imaginal disc stimulates activation of the Hippo pathway transcription factor Yorkie in surviving and nearby cells, and that Yorkie is required for the ability of the wing to regenerate after genetic ablation of the wing primordia. Induction of apoptosis activates Yorkie through the Jun kinase pathway, and direct activation of Jun kinase signaling also promotes Yorkie activation in the wing disc. We also show that depletion of neoplastic tumor suppressor genes, including lethal giant larvae and discs large, or activation of aPKC, activates Yorkie through Jun kinase signaling, and that Jun kinase activation is necessary, but not sufficient, for the disruption of apical-basal polarity associated with loss of lethal giant larvae. Our observations identify Jnk signaling as a modulator of Hippo pathway activity in wing imaginal discs, and implicate Yorkie activation in compensatory cell proliferation and disc regeneration.
Zakaria, S, Mao Y, Kuta A, Ferreira de Sousa C, Gaufo GO, Mcneill H, Hindges R, Guthrie S, Irvine KD, Francis-West PH.  2014.  Regulation of neuronal migration by dchs1-fat4 planar cell polarity.. Current biology : CB. 24:1620-1627. AbstractWebsite
Planar cell polarity (PCP) describes the polarization of cell structures and behaviors within the plane of a tissue. PCP is essential for the generation of tissue architecture during embryogenesis and for postnatal growth and tissue repair, yet how it is oriented to coordinate cell polarity remains poorly understood [1]. In Drosophila, PCP is mediated via the Frizzled-Flamingo (Fz-PCP) and Dachsous-Fat (Fat-PCP) pathways [1-3]. Fz-PCP is conserved in vertebrates, but an understanding in vertebrates of whether and how Fat-PCP polarizes cells, and its relationship to Fz-PCP signaling, is lacking. Mutations in human FAT4 and DCHS1, key components of Fat-PCP signaling, cause Van Maldergem syndrome, characterized by severe neuronal abnormalities indicative of altered neuronal migration [4]. Here, we investigate the role and mechanisms of Fat-PCP during neuronal migration using the murine facial branchiomotor (FBM) neurons as a model. We find that Fat4 and Dchs1 are expressed in complementary gradients and are required for the collective tangential migration of FBM neurons and for their PCP. Fat4 and Dchs1 are required intrinsically within the FBM neurons and extrinsically within the neuroepithelium. Remarkably, Fat-PCP and Fz-PCP regulate FBM neuron migration along orthogonal axes. Disruption of the Dchs1 gradients by mosaic inactivation of Dchs1 alters FBM neuron polarity and migration. This study implies that PCP in vertebrates can be regulated via gradients of Fat4 and Dchs1 expression, which establish intracellular polarity across FBM cells during their migration. Our results also identify Fat-PCP as a novel neuronal guidance system and reveal that Fat-PCP and Fz-PCP can act along orthogonal axes.
Okajima, T, Irvine KD.  2002.  Regulation of notch signaling by o-linked fucose. Cell. 111:893-904. AbstractWebsite
Notch and its ligands are modified by a protein O-fucosyltransferase (OFUT1) that attaches fucose to a Serine or Threonine within EGF domains. By using RNAi to decrease Ofut1 expression in Drosophila, we demonstrate that O-linked fucose is positively required for Notch signaling, including both Fringe-dependent and Fringe-independent processes. The requirement for Ofut1 is cell autonomous, in the signal-receiving cell, and upstream of Notch activation. The transcription of Ofut1 is developmentally regulated, and surprisingly, overexpression of Ofut1 inhibits Notch signaling. Together, these results indicate that OFUT1 is a core component of the Notch pathway, which is required for the activation of Notch by its ligands, and whose regulation may contribute to the pattern of Notch activation during development.
Codelia, V, Sun G, Irvine KD.  2014.  Regulation of YAP by Mechanical Strain through Jnk and Hippo Signaling. Current Biology. 24:2012-2017.Website
Guerra, TL, Levitan O, Frada MJ, Sun JS, Falkowski PG, Dismukes GC.  2013.  Regulatory branch points affecting protein and lipid biosynthesis in the diatom Phaeodactylum tricornutum. Biomass and Bioenergy. 59:306-315. AbstractWebsite
It is widely established that nutritional nitrogen deprivation increases lipid accumulation but severely decreases growth rate in microalgae. To understand the regulatory branch points that determine the partitioning of carbon among its potential sinks, we analyzed metabolite and transcript levels of central carbon metabolic pathways and determined the average fluxes and quantum requirements for the synthesis of protein, carbohydrates and fatty acid in the diatom Phaeodactylum tricornutum. Under nitrate-starved conditions, the carbon fluxes into all major sinks decrease sharply; the largest decrease was into proteins and smallest was into lipids. This reduction of carbon flux into lipids together with a significantly lower growth rate is responsible for lower overall FA productivities implying that nitrogen starvation is not a bioenergetically feasible strategy for increasing biodiesel production. The reduction in these fluxes was accompanied by an 18-fold increase in α-ketoglutarate (AKG), 3-fold increase in NADPH/NADP+, and sharp decreases in glutamate (GLU) and glutamine (GLN) levels. Additionally, the mRNA level of acetyl-CoA carboxylase and two type II diacylglycerol-acyltransferases were increased. Partial suppression of nitrate reductase by tungstate resulted in similar trends at lower levels as for nitrate starvation. These results reveal that the GS/GOGAT pathway is the main regulation site for nitrate dependent control of carbon partitioning between protein and lipid biosynthesis, while the AKG/GL(N/U) metabolite ratio is a transcriptional signal, possibly related to redox poise of intermediates in the photosynthetic electron transport system.