Publications

Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
Filters: First Letter Of Title is N  [Clear All Filters]
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
N
Vinyard, DJ, Sun JS, Gimpel J, Ananyev GM, Mayfield SP, Dismukes GC.  2016.  Natural isoforms of the Photosystem II D1 subunit differ in photoassembly efficiency of the water-oxidizing complex.. Photosynth Res.. Abstract
Oxygenic photosynthesis efficiency at increasing solar flux is limited by light-induced damage (photoinhibition) of Photosystem II (PSII), primarily targeting the D1 reaction center subunit. Some cyanobacteria contain two natural isoforms of D1 that function better under low light (D1:1) or high light (D1:2). Herein, rates and yields of photoassembly of the Mn4CaO5 water-oxidizing complex (WOC) from the free inorganic cofactors (Mn2+, Ca2+, water, electron acceptor) and apo-WOC-PSII are shown to differ significantly: D1:1 apo-WOC-PSII exhibits a 2.3-fold faster rate-limiting step of photoassembly and up to seven-fold faster rate to the first light-stable Mn3+ intermediate, IM1*, but with a much higher rate of photoinhibition than D1:2. Conversely, D1:2 apo-WOC-PSII assembles slower but has up to seven-fold higher yield, achieved by a higher quantum yield of charge separation and slower photoinhibition rate. These results confirm and extend previous observations of the two holoenzymes: D1:2-PSII has a greater quantum yield of primary charge separation, faster [P680 + Q A - ] charge recombination and less photoinhibition that results in a slower rate and higher yield of photoassembly of its apo-WOC-PSII complex. In contrast, D1:1-PSII has a lower quantum yield of primary charge separation, a slower [P680 + Q A - ] charge recombination rate, and faster photoinhibition that together result in higher rate but lower yield of photoassembly at higher light intensities. Cyanobacterial PSII reaction centers that contain the high- and low-light D1 isoforms can tailor performance to optimize photosynthesis at varying light conditions, with similar consequences on their photoassembly kinetics and yield. These different efficiencies of photoassembly versus photoinhibition impose differential costs for biosynthesis as a function of light intensity.
Guerra, LT, Xu Y, Bennette N, McNeely K, Bryant DA, Dismukes GC.  2013.  Natural osmolytes are much less effective substrates than glycogen for catabolic energy production in the marine cyanobacterium Synechococcus sp. strain PCC 7002 .. J. Biotechnol.. 166:65-75. Abstract
ADP-glucose pyrophosphorylase, encoded by glgC, catalyzes the first step of glycogen and glucosylglycer(ol/ate) biosynthesis. Here we report the construction of the first glgC null mutant of a marine cyanobacterium (Synechococcus sp. PCC 7002) and investigate its impact on dark anoxic metabolism (autofermentation). The glgC mutant had 98% lower ADP-glucose, synthesized no glycogen and produced appreciably more soluble sugars (mainly sucrose) than wild type (WT). Some glucosylglycerol was still observed, which suggests that the mutant has another, inefficient ADP-glucose synthesis pathway. In contrast, hypersaline conditions (1M NaCl) were lethal to the mutant strain, indicating that, unlike other strains, the elevated sucrose does not compensate for the reduced GG as osmolyte. In contrast to WT, nitrate limitation did not cause bleaching of N-containing pigments or carbohydrate accumulation in the glgC mutant, indicating impaired recycling of nitrogen stores. Despite the 2-fold increase in osmolytes, both the respiration and autofermentation rates of the glgC mutant were appreciably slower (2-4-fold) and correlated quantitatively with the lower fraction of insoluble carbohydrates relative to WT (85% vs. 12%). However, the remaining insoluble carbohydrates still accounted for a high fraction of the carbohydrate catabolized (38%), indicating that insoluble carbohydrates rather than osmolytes were the preferred substrate for autofermentation.
Nickels, BE.  2012.  A new way to start: nanoRNA-mediated priming of transcription initiation.. Transcription. 3(6):300-304. Abstract
A recent study provides evidence that RNA polymerase uses 2- to ~4-nt RNAs, species termed "nanoRNAs," to prime transcription initiation in Escherichia coli. Priming of transcription initiation with nanoRNAs represents a previously undocumented component of transcription start site selection and gene expression.
Berdygulova, Z, Esyunina D, Miropolskaya N, Mukhamedyarov D, Kuznedelov K, Nickels BE, Severinov K, Kulbachinskiy A, Minakhin L.  2012.  A novel phage-encoded transcription antiterminator acts by suppressing bacterial RNA polymerase pausing.. Nucleic Acids Research. Abstract
Gp39, a small protein encoded by Thermus thermophilus phage P23-45, specifically binds the host RNA polymerase (RNAP) and inhibits transcription initiation. Here, we demonstrate that gp39 also acts as an antiterminator during transcription through intrinsic terminators. The antitermination activity of gp39 relies on its ability to suppress transcription pausing at poly(U) tracks. Gp39 also accelerates transcription elongation by decreasing RNAP pausing and backtracking but does not significantly affect the rates of catalysis of individual reactions in the RNAP active center. We mapped the RNAP-gp39 interaction site to the β flap, a domain that forms a part of the RNA exit channel and is also a likely target for λ phage antiterminator proteins Q and N, and for bacterial elongation factor NusA. However, in contrast to Q and N, gp39 does not depend on NusA or other auxiliary factors for its activity. To our knowledge, gp39 is the first characterized phage-encoded transcription factor that affects every step of the transcription cycle and suppresses transcription termination through its antipausing activity.