Publications

Filters: First Letter Of Last Name is T  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
T
Tadigotla, VR, O Maoiléidigh D, Sengupta AM, Epshtein V, Ebright RH, Nudler E, Ruckenstein AE.  2006.  Thermodynamic and kinetic modeling of transcriptional pausing.. Proceedings of the National Academy of Sciences of the United States of America. 103(12):4439-44. Abstract
We present a statistical mechanics approach for the prediction of backtracked pauses in bacterial transcription elongation derived from structural models of the transcription elongation complex (EC). Our algorithm is based on the thermodynamic stability of the EC along the DNA template calculated from the sequence-dependent free energy of DNA-DNA, DNA-RNA, and RNA-RNA base pairing associated with (i) the translocational and size fluctuations of the transcription bubble; (ii) changes in the associated DNA-RNA hybrid; and (iii) changes in the cotranscriptional RNA secondary structure upstream of the RNA exit channel. The calculations involve no adjustable parameters except for a cutoff used to discriminate paused from nonpaused complexes. When applied to 100 experimental pauses in transcription elongation by Escherichia coli RNA polymerase on 10 DNA templates, the approach produces statistically significant results. We also present a kinetic model for the rate of recovery of backtracked paused complexes. A crucial ingredient of our model is the incorporation of kinetic barriers to backtracking resulting from steric clashes of EC with the cotranscriptionally generated RNA secondary structure, an aspect not included explicitly in previous attempts at modeling the transcription elongation process.
Tan, Q, Linask KL, Ebright RH, Woychik NA.  2000.  Activation mutants in yeast RNA polymerase II subunit RPB3 provide evidence for a structurally conserved surface required for activation in eukaryotes and bacteria.. Genes & development. 14(3):339-48. Abstract
We have identified a mutant in RPB3, the third-largest subunit of yeast RNA polymerase II, that is defective in activator-dependent transcription, but not defective in activator-independent, basal transcription. The mutant contains two amino-acid substitutions, C92R and A159G, that are both required for pronounced defects in activator-dependent transcription. Synthetic enhancement of phenotypes of C92R and A159G, and of several other pairs of substitutions, is consistent with a functional relationship between residues 92-95 and 159-161. Homology modeling of RPB3 on the basis of the crystallographic structure of alphaNTD indicates that residues 92-95 and 159-162 are likely to be adjacent within the structure of RPB3. In addition, homology modeling indicates that the location of residues 159-162 within RPB3 corresponds to the location of an activation target within alphaNTD (the target of activating region 2 of catabolite activator protein, an activation target involved in a protein-protein interaction that facilitates isomerization of the RNA polymerase promoter closed complex to the RNA polymerase promoter open complex). The apparent finding of a conserved surface required for activation in eukaryotes and bacteria raises the possibility of conserved mechanisms of activation in eukaryotes and bacteria.
Tanaka, T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, Numa H, Sakai H, Wu J, Itoh T, Sasaki T et al..  2008.  The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Res. 36:D1028-33. AbstractWebsite
The Rice Annotation Project Database (RAP-DB) was created to provide the genome sequence assembly of the International Rice Genome Sequencing Project (IRGSP), manually curated annotation of the sequence, and other genomics information that could be useful for comprehensive understanding of the rice biology. Since the last publication of the RAP-DB, the IRGSP genome has been revised and reassembled. In addition, a large number of rice-expressed sequence tags have been released, and functional genomics resources have been produced worldwide. Thus, we have thoroughly updated our genome annotation by manual curation of all the functional descriptions of rice genes. The latest version of the RAP-DB contains a variety of annotation data as follows: clone positions, structures and functions of 31 439 genes validated by cDNAs, RNA genes detected by massively parallel signature sequencing (MPSS) technology and sequence similarity, flanking sequences of mutant lines, transposable elements, etc. Other annotation data such as Gnomon can be displayed along with those of RAP for comparison. We have also developed a new keyword search system to allow the user to access useful information. The RAP-DB is available at: http://rapdb.dna.affrc.go.jp/ and http://rapdb.lab.nig.ac.jp/.
Tang, H, Severinov K, Goldfarb A, Fenyo D, Chait B, Ebright RH.  1994.  Location, structure, and function of the target of a transcriptional activator protein.. Genes & development. 8(24):3058-67. Abstract
We have isolated and characterized single-amino-acid substitution mutants of RNA polymerase alpha subunit defective in CAP-dependent transcription at the lac promoter but not defective in CAP-independent transcription. Our results establish that (1) amino acids 258-265 of alpha constitute an "activation target" essential for CAP-dependent transcription at the lac promoter but not essential for CAP-independent transcription, (2) amino acid 261 is the most critical amino acid of the activation target, (3) amino acid 261 is distinct from the determinants for alpha-DNA interaction, and (4) the activation target may fold as a surface amphipathic alpha-helix. We propose a model for transcriptional activation at the lac promoter that integrates these and other recent results regarding transcriptional activation and RNA polymerase structure and function.
Tang, H, Severinov K, Goldfarb A, Ebright RH.  1995.  Rapid RNA polymerase genetics: one-day, no-column preparation of reconstituted recombinant Escherichia coli RNA polymerase.. Proceedings of the National Academy of Sciences of the United States of America. 92(11):4902-6. Abstract
We present a simple, rapid procedure for reconstitution of Escherichia coli RNA polymerase holoenzyme (RNAP) from individual recombinant alpha, beta, beta', and sigma 70 subunits. Hexahistidine-tagged recombinant alpha subunit purified by batch-mode metal-ion-affinity chromatography is incubated with crude recombinant beta, beta', and sigma 70 subunits from inclusion bodies, and the resulting reconstituted recombinant RNAP is purified by batch-mode metal-ion-affinity chromatography. RNAP prepared by this procedure is indistinguishable from RNAP prepared by conventional methods with respect to subunit stoichiometry, alpha-DNA interaction, catabolite gene activator protein (CAP)-independent transcription, and CAP-dependent transcription. Experiments with alpha (1-235), an alpha subunit C-terminal deletion mutant, establish that the procedure is suitable for biochemical screening of subunit lethal mutants.
Tang, W, Liu S, Degen D, Ebright RH, Prusov EV.  2014.  Synthesis and Evaluation of Novel Analogues of Ripostatins.. Chemistry. 20:12310-9. AbstractWebsite
Ripostatins are polyene macrolactones isolated from the myxobacterium Sorangium cellulosum. They exhibit antibiotic activity by inhibiting bacterial RNA polymerase (RNAP) through a binding site and mechanism that are different from those of current antibacterial drugs. Thus, the ripostatins serve as starting points for the development of new anti-infective agents with a novel mode of action. In this work, several derivatives of ripostatins were produced. 15-Desoxyripostatin A was synthesized by using a one-pot carboalumination/cross-coupling. 5,6-Dihydroripostatin A was constructed by utilizing an intramolecular Suzuki cross-coupling macrolactonization approach. 14,14'-Difluororipostatin A and both epimeric 14,14'-difluororipostatins B were synthesized by using a Reformatsky type aldol addition of a haloketone, Stille cross-coupling, and ring-closing metathesis. The RNAP-inhibitory and antibacterial activities are presented. Structure-activity relationships indicate that the monocyclic keto-ol form of ripostatin A is the active form of ripostatin A, that the ripostatin C5-C6 unsaturation is important for activity, and that C14 geminal difluorination of ripostatin B results in no loss of activity.
Tang, H, Kim Y, Severinov K, Goldfarb A, Ebright RH.  1996.  Escherichia coli RNA polymerase holoenzyme: rapid reconstitution from recombinant alpha, beta, beta', and sigma subunits.. Methods in enzymology. 273:130-4.
Tang, H, Sun X, Reinberg D, Ebright RH.  1996.  Protein-protein interactions in eukaryotic transcription initiation: structure of the preinitiation complex.. Proceedings of the National Academy of Sciences of the United States of America. 93(3):1119-24. Abstract
We have used alanine scanning to analyze protein-protein interactions by human TATA-element binding protein (TBP) within the transcription preinitiation complex. The results indicate that TBP interacts with RNA polymerase II and general transcription factors IIA, IIB, and IIF within the functional transcription preinitiation complex and define the determinants of TBP for each of these interactions. The results permit construction of a model for the structure of the preinitiation complex.
Tanneti, NS, Landy K, Joyce EF, McKim KS.  2011.  A Pathway for Synapsis Initiation during Zygotene in Drosophila Oocytes. Curr Biol. 21:1852-7. AbstractWebsite
Formation of the synaptonemal complex (SC), or synapsis, between homologs in meiosis is essential for crossing over and chromosome segregation [1-4]. How SC assembly initiates is poorly understood but may have a critical role in ensuring synapsis between homologs and regulating double-strand break (DSB) and crossover formation. We investigated the genetic requirements for synapsis in Drosophila and found that there are three temporally and genetically distinct stages of synapsis initiation. In "early zygotene" oocytes, synapsis is only observed at the centromeres. We also found that nonhomologous centromeres are clustered during this process. In "mid-zygotene" oocytes, SC initiates at several euchromatic sites. The centromeric and first euchromatic SC initiation sites depend on the cohesion protein ORD. In "late zygotene" oocytes, SC initiates at many more sites that depend on the Kleisin-like protein C(2)M. Surprisingly, late zygotene synapsis initiation events are independent of the earlier mid-zygotene events, whereas both mid and late synapsis initiation events depend on the cohesin subunits SMC1 and SMC3. We propose that the enrichment of cohesion proteins at specific sites promotes homolog interactions and the initiation of euchromatic SC assembly independent of DSBs. Furthermore, the early euchromatic SC initiation events at mid-zygotene may be required for DSBs to be repaired as crossovers.
Thyssen, G, Svab Z, Maliga P.  2012.  Cell-to-cell movement of plastids in plants. Proc. Natl. Acad. Sci. U.S.A.. 109:2439-43. AbstractWebsite
Our objective was to test whether or not plastids and mitochondria, the two DNA-containing organelles, move between cells in plants. As our experimental approach, we grafted two different species of tobacco, Nicotiana tabacum and Nicotiana sylvestris. Grafting triggers formation of new cell-to-cell contacts, creating an opportunity to detect cell-to-cell organelle movement between the genetically distinct plants. We initiated tissue culture from sliced graft junctions and selected for clonal lines in which gentamycin resistance encoded in the N. tabacum nucleus was combined with spectinomycin resistance encoded in N. sylvestris plastids. Here, we present evidence for cell-to-cell movement of the entire 161-kb plastid genome in these plants, most likely in intact plastids. We also found that the related mitochondria were absent, suggesting independent movement of the two DNA-containing organelles. Acquisition of plastids from neighboring cells provides a mechanism by which cells may be repopulated with functioning organelles. Our finding supports the universality of intercellular organelle trafficking and may enable development of future biotechnological applications.
Thyssen, G, Svab Z, Maliga P.  2012.  Cell-to-cell movement of plastids in plants. Proceedings of the National Academy of Sciences of the United States of America. 109:2439-43. AbstractWebsite
Our objective was to test whether or not plastids and mitochondria, the two DNA-containing organelles, move between cells in plants. As our experimental approach, we grafted two different species of tobacco, Nicotiana tabacum and Nicotiana sylvestris. Grafting triggers formation of new cell-to-cell contacts, creating an opportunity to detect cell-to-cell organelle movement between the genetically distinct plants. We initiated tissue culture from sliced graft junctions and selected for clonal lines in which gentamycin resistance encoded in the N. tabacum nucleus was combined with spectinomycin resistance encoded in N. sylvestris plastids. Here, we present evidence for cell-to-cell movement of the entire 161-kb plastid genome in these plants, most likely in intact plastids. We also found that the related mitochondria were absent, suggesting independent movement of the two DNA-containing organelles. Acquisition of plastids from neighboring cells provides a mechanism by which cells may be repopulated with functioning organelles. Our finding supports the universality of intercellular organelle trafficking and may enable development of future biotechnological applications.
Thyssen, G, Svab Z, Maliga P.  2012.  Exceptional inheritance of plastids via pollen in Nicotiana sylvestris with no detectable paternal mitochondrial DNA in the progeny. Plant J.. 72:84-8. AbstractWebsite
Plastids and mitochondria, the DNA-containing cytoplasmic organelles, are maternally inherited in the majority of angiosperm species. Even in plants with strict maternal inheritance, exceptional paternal transmission of plastids has been observed. Our objective was to detect rare leakage of plastids via pollen in Nicotiana sylvestris and to determine if pollen transmission of plastids results in co-transmission of paternal mitochondria. As father plants, we used N. sylvestris plants with transgenic, selectable plastids and wild-type mitochondria. As mother plants, we used N. sylvestris plants with Nicotiana undulata cytoplasm, including the CMS-92 mitochondria that cause cytoplasmic male sterility (CMS) by homeotic transformation of the stamens. We report here exceptional paternal plastid DNA in approximately 0.002% of N. sylvestris seedlings. However, we did not detect paternal mitochondrial DNA in any of the six plastid-transmission lines, suggesting independent transmission of the cytoplasmic organelles via pollen. When we used fertile N. sylvestris as mothers, we obtained eight fertile plastid transmission lines, which did not transmit their plastids via pollen at higher frequencies than their fathers. We discuss the implications for transgene containment and plant evolutionary histories inferred from cytoplasmic phylogenies.
Tungsuchat-Huang, T, Maliga P.  2014.  Plastid marker gene excision in greenhouse-grown tobacco by Agrobacterium-delivered Cre recombinase. Chloroplast Biotechnology. 1132:205-220. Abstract
Uniform transformation of the thousands of plastid genome (ptDNA) copies in a cell is driven by selection for plastid markers. When each of the plastid genome copies is uniformly altered, the marker gene is no longer needed. Plastid markers have been efficiently excised by site-specific recombinases expressed from nuclear genes either by transforming tissue culture cells or introducing the genes by pollination. Here we describe a protocol for the excision of plastid marker genes directly in tobacco (Nicotiana tabacum) plants by the Cre recombinase. Agrobacterium encoding the recombinase on its T-DNA is injected at an axillary bud site of a decapitated plant, forcing shoot regeneration at the injection site. The excised plastid marker, the bar au gene, confers a visual aurea leaf phenotype; thus marker excision via the flanking recombinase target sites is recognized by the restoration of normal green color of the leaves. The bar au marker-free plastids are transmitted through seed to the progeny. PCR and DNA gel blot (Southern) protocols to confirm transgene integration and plastid marker excision are also provided herein.
Tungsuchat-Huang, T, Maliga P.  2012.  Visual marker and Agrobacterium-delivered recombinase enable the manipulation of the plastid genome in greenhouse-grown tobacco plants. Plant J.. 70:717-25. AbstractWebsite
Successful manipulation of the plastid genome (ptDNA) has been carried out so far only in tissue-culture cells, a limitation that prevents plastid transformation being applied in major agronomic crops. Our objective is to develop a tissue-culture independent protocol that enables manipulation of plastid genomes directly in plants to yield genetically stable seed progeny. We report that in planta excision of a plastid aurea bar gene (bar(au) ) is detectable in greenhouse-grown plants by restoration of the green pigmentation in tobacco leaves. The P1 phage Cre or PhiC31 phage Int site-specific recombinase was delivered on the Agrobacterium T-DNA injected at the axillary bud site, resulting in the excision of the target-site flanked marker gene. Differentiation of new apical meristems was forced by decapitating the plants above the injection site. The new shoot apex that differentiated at the injection site contained bar(au)-free plastids in 30-40% of the injected plants, of which 7% transmitted the bar(au)-free plastids to the seed progeny. The success of obtaining seed with bar(au)-free plastids depended on repeatedly forcing shoot development from axillary buds, a process that was guided by the size and position of green sectors in the leaves. The success of in planta plastid marker excision proved that manipulation of the plastid genomes is feasible within an intact plant. Extension of the protocol to in planta plastid transformation depends on the development of new protocols for the delivery of transforming DNA encoding visual markers.
Tungsuchat-Huang, T, Slivinski KM, Sinagawa-Garcia SR, Maliga P.  2011.  Visual spectinomycin resistance (aadA(au)) gene for facile identification of transplastomic sectors in tobacco leaves. Plant Mol. Biol.. 76:453-61. AbstractWebsite
Identification of a genetically stable Nicotiana tabacum (tobacco) plant with a uniform population of transformed plastid genomes (ptDNA) takes two cycles of plant regeneration from chimeric leaves and analysis of multiple shoots by Southern probing in each cycle. Visual detection of transgenic sectors facilitates identification of transformed shoots in the greenhouse, complementing repeated cycles of blind purification in culture. In addition, it provides a tool to monitor the maintenance of transplastomic state. Our current visual marker system requires two genes: the aurea bar (bar(au)) gene that confers a golden leaf phenotype and a spectinomycin resistance (aadA) gene that is necessary for the introduction of the bar(au) gene in the plastid genome. We developed a novel aadA gene that fulfills both functions: it is a conventional selectable aadA gene in culture, and allows detection of transplastomic sectors in the greenhouse by leaf color. Common causes of pigment deficiency in leaves are mutations in photosynthetic genes, which affect chlorophyll accumulation. We use a different approach to achieve pigment deficiency: post-transcriptional interference with the expression of the clpP1 plastid gene by aurea aadA(au) transgene. This interference produces plants with reduced growth and a distinct color, but maintains a wild-type gene set and the capacity for photosynthesis. Importantly, when the aurea gene is removed, green pigmentation and normal growth rate are restored. Because the aurea plants are viable, the new aadA(au) genes are useful to query rare events in large populations and for in planta manipulation of the plastid genome.
Tungsuchat-Huang, T, Sinagawa-Garcia SR, Paredes-Lopez O, Maliga P.  2010.  Study of plastid genome stability in tobacco reveals that the loss of marker genes is more likely by gene conversion than by recombination between 34-bp loxP repeats. Plant Physiol.. 153:252-9. AbstractWebsite
In transformed tobacco (Nicotiana tabacum) plastids, we flank the marker genes with recombinase target sites to facilitate their posttransformation excision. The P1 phage loxP sites are identical 34-bp direct repeats, whereas the phiC31 phage attB/attP sites are 54- and 215-bp sequences with partial homology within the 54-bp region. Deletions in the plastid genome are known to occur by recombination between directly repeated sequences. Our objective was to test whether or not the marker genes may be lost by homologous recombination via the directly repeated target sites in the absence of site-specific recombinases. The sequence between the target sites was the bar(au) gene that causes a golden-yellow (aurea) leaf color, so that the loss of the bar(au) gene can be readily detected by the appearance of green sectors. We report here that transplastomes carrying the bar(au) gene marker between recombinase target sites are relatively stable because no green sectors were detected in approximately 36,000 seedlings (Nt-pSS33 lines) carrying attB/attP-flanked bar(au) gene and in approximately 38,000 seedlings (Nt-pSS42 lines) carrying loxP-flanked bar(au) gene. Exceptions were six uniformly green plants in the Nt-pSS42-7A progeny. Sequencing the region of plastid DNA that may derive from the vector indicated that the bar(au) gene in the six green plants was lost by gene conversion using wild-type plastid DNA as template rather than by deletion via directly repeated loxP sites. Thus, the recombinase target sites incorporated in the plastid genome for marker gene excisions are too short to mediate the loss of marker genes by homologous recombination at a measurable frequency.
Tuske, S, Sarafianos SG, Wang X, Hudson B, Sineva E, Mukhopadhyay J, Birktoft JJ, Leroy O, Ismail S, Clark AD et al..  2005.  Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation.. Cell. 122(4):541-52. Abstract
We define the target, mechanism, and structural basis of inhibition of bacterial RNA polymerase (RNAP) by the tetramic acid antibiotic streptolydigin (Stl). Stl binds to a site adjacent to but not overlapping the RNAP active center and stabilizes an RNAP-active-center conformational state with a straight-bridge helix. The results provide direct support for the proposals that alternative straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations exist and that cycling between straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations is required for RNAP function. The results set bounds on models for RNAP function and suggest strategies for design of novel antibacterial agents.
Twist, KA, Husnain SI, Franke JD, Jain D, Campbell EA, Nickels BE, Thomas MS, Darst SA, Westblade LF.  2011.  A novel method for the production of in vivo-assembled, recombinant Escherichia coli RNA polymerase lacking the alpha C-terminal domain. Protein Sci. 20:986-95. AbstractWebsite
The biochemical characterization of the bacterial transcription cycle has been greatly facilitated by the production and characterization of targeted RNA polymerase (RNAP) mutants. Traditionally, RNAP preparations containing mutant subunits have been produced by reconstitution of denatured RNAP subunits, a process that is undesirable for biophysical and structural studies. Although schemes that afford the production of in vivo-assembled, recombinant RNAP containing amino acid substitutions, insertions, or deletions in either the monomeric beta or beta' subunits have been developed, there is no such system for the production of in vivo-assembled, recombinant RNAP with mutations in the homodimeric alpha-subunits. Here, we demonstrate a strategy to generate in vivo-assembled, recombinant RNAP preparations free of the alpha C-terminal domain. Furthermore, we describe a modification of this approach that would permit the purification of in vivo-assembled, recombinant RNAP containing any alpha-subunit variant, including those variants that are lethal. Finally, we propose that these related approaches can be extended to generate in vivo-assembled, recombinant variants of other protein complexes containing homomultimers for biochemical, biophysical, and structural analyses.
Twombly, V, Blackman RK, Jin H, Graff JM, Padgett RW, Gelbart WM.  1996.  The TGF-beta signaling pathway is essential for Drosophila oogenesis. Development (Cambridge, England). 122:1555-65. AbstractWebsite
We examine roles of signaling by secreted ligands of the TGF-beta family during Drosophila oogenesis. One family member, the DPP ligand encoded by the decapentaplegic (dpp) gene, is required for patterning of anterior eggshell structures. This requirement presumably reflects the expression pattern of dpp in an anterior subset of somatic follicle cells: the centripetally migrating and the nurse cell-associated follicle cells. Similar requirements are also revealed by mutations in the saxophone (sax)-encoded receptor, consistent with the idea that DPP signaling is, at least in part, mediated by the SAX receptor. A loss of germline sax function results in a block in oogenesis associated with egg chamber degeneration and a failure of the transfer of nurse cell contents to the oocyte, indicating that TGF-beta signaling is required for these events. Some phenotypes of sax mutations during oogenesis suggest that SAX responds to at least one other TGF-beta ligand as well in the posterior follicle cells.
Tyryshkin, AM, Watt RK, Baranov SV, Dasgupta J, Hendrich MP, Dismukes CG.  2006.  Spectroscopic Evidence for Ca2+ Involvement in the Assembly of the Mn4Ca Cluster in the Photosynthetic Water-Oxidizing Complex†. Biochemistry. 45:12876-12889. AbstractWebsite
null