Publications

Filters: First Letter Of Last Name is K  [Clear All Filters]
A B C D E F G H I J [K] L M N O P Q R S T U V W X Y Z   [Show ALL]
K
Kane, NS, Vora M, Varre KJ, Padgett RW.  2016.  Efficient Screening of CRISPR/Cas9-Induced Events in Drosophila using a co-CRISPR Strategy. G3. 7(1):87-93.
Kapanidis, AN, Margeat E, Laurence TA, Doose S, Ho S O, Mukhopadhyay J, Kortkhonjia E, Mekler V, Ebright RH, Weiss S.  2005.  Retention of transcription initiation factor sigma70 in transcription elongation: single-molecule analysis.. Molecular cell. 20(3):347-56. Abstract
We report a single-molecule assay that defines, simultaneously, the translocational position of a protein complex relative to DNA and the subunit stoichiometry of the complex. We applied the assay to define translocational positions and sigma70 contents of bacterial transcription elongation complexes in vitro. The results confirm ensemble results indicating that a large fraction, approximately 70%-90%, of early elongation complexes retain sigma70 and that a determinant for sigma70 recognition in the initial transcribed region increases sigma70 retention in early elongation complexes. The results establish that a significant fraction, approximately 50%-60%, of mature elongation complexes retain sigma70 and that a determinant for sigma70 recognition in the initial transcribed region does not appreciably affect sigma70 retention in mature elongation complexes. The results further establish that, in mature elongation complexes that retain sigma70, the half-life of sigma70 retention is long relative to the time-scale of elongation, suggesting that some complexes may retain sigma70 throughout elongation.
Kapanidis, AN, Ebright YW, Ludescher RD, Chan S, Ebright RH.  2001.  Mean DNA bend angle and distribution of DNA bend angles in the CAP-DNA complex in solution.. Journal of molecular biology. 312(3):453-68. Abstract
In order to define the mean DNA bend angle and distribution of DNA bend angles in the catabolite activator protein (CAP)-DNA complex in solution under standard transcription initiation conditions, we have performed nanosecond time-resolved fluorescence measurements quantifying energy transfer between a probe incorporated at a specific site in CAP, and a complementary probe incorporated at each of five specific sites in DNA. The results indicate that the mean DNA bend angle is 77(+/-3) degrees - consistent with the mean DNA bend angle observed in crystallographic structures (80(+/-12) degrees ). Lifetime-distribution analysis indicates that the distribution of DNA bend angles is relatively narrow, with <10 % of DNA bend angles exceeding 100 degrees. Millisecond time-resolved luminescence measurements using lanthanide-chelate probes provide independent evidence that the upper limit of the distribution of DNA bend angles is approximately 100 degrees. The methods used here will permit mutational analysis of CAP-induced DNA bending and the role of CAP-induced DNA bending in transcriptional activation.
Kapanidis, AN, Margeat E, Ho S O, Kortkhonjia E, Weiss S, Ebright RH.  2006.  Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism.. Science (New York, N.Y.). 314(5802):1144-7. Abstract
Using fluorescence resonance energy transfer to monitor distances within single molecules of abortively initiating transcription initiation complexes, we show that initial transcription proceeds through a "scrunching" mechanism, in which RNA polymerase (RNAP) remains fixed on promoter DNA and pulls downstream DNA into itself and past its active center. We show further that putative alternative mechanisms for RNAP active-center translocation in initial transcription, involving "transient excursions" of RNAP relative to DNA or "inchworming" of RNAP relative to DNA, do not occur. The results support a model in which a stressed intermediate, with DNA-unwinding stress and DNA-compaction stress, is formed during initial transcription, and in which accumulated stress is used to drive breakage of interactions between RNAP and promoter DNA and between RNAP and initiation factors during promoter escape.
Ke, A, Mathias JR, Vershon AK, Wolberger C.  2002.  Structural and Thermodynamic Characterization of the DNa Binding Properties of a Triple Alanine Mutant of MATalpha2. Structure. 10:961-971. Abstract
Triply mutated MATalpha2 protein, alpha2-3A, in which all three major groove-contacting residues are mutated to alanine, is defective in binding DNA alone or in complex with Mcm1 yet binds with MATa1 with near wild-type affinity and specificity. To gain insight into this unexpected behavior, we determined the crystal structure of the a1/alpha2-3A/DNA complex. The structure shows that the triple mutation causes a collapse of the alpha2-3A/DNA interface that results in a reorganized set of alpha2-3A/DNA contacts, thereby enabling the mutant protein to recognize the wild-type DNA sequence. Isothermal titration calorimetry measurements reveal that a much more favorable entropic component stabilizes the a1/alpha2-3A/DNA complex than the alpha2-3A/DNA complex. The combined structural and thermodynamic studies provide an explanation of how partner proteins influence the sequence specificity of a DNA binding protein.
Khorobrykh, A, Dasgupta J, Kolling DRJ, Terentyev V, Klimov VV, Dismukes CG.  2013.  Evolutionary origins of the photosynthetic water oxidation cluster: bicarbonate permits Mn(2+) photo-oxidation by anoxygenic bacterial reaction centers.. Chembiochem : a European journal of chemical biology. 14(14):1725-31. Abstract
The enzyme that catalyzes water oxidation in oxygenic photosynthesis contains an inorganic cluster (Mn4 CaO5 ) that is universally conserved in all photosystem II (PSII) protein complexes. Its hypothesized precursor is an anoxygenic photobacterium containing a type 2 reaction center as photo-oxidant (bRC2, iron-quinone type). Here we provide the first experimental evidence that a native bRC2 complex can catalyze the photo-oxidation of Mn(2+) to Mn(3+) , but only in the presence of bicarbonate concentrations that allows the formation of (bRC2)Mn(2+) (bicarbonate)1-2 complexes. Parallel-mode EPR spectroscopy was used to characterize the photoproduct, (bRC2)Mn(3+) (CO3 (2-) ), based on the g tensor and (55) Mn hyperfine splitting. (Bi)carbonate coordination extends the lifetime of the Mn(3+) photoproduct by slowing charge recombination. Prior electrochemical measurements show that carbonate complexation thermodynamically stabilizes the Mn(3+) product by 0.9-1 V relative to water ligands. A model for the origin of the water oxidation catalyst is presented that proposes chemically feasible steps in the evolution of oxygenic PSIIs, and is supported by literature results on the photoassembly of contemporary PSIIs.
Kim, J, Bortz E, Zhong H, Leeuw T, Leberer E, Vershon AK, Hirsch JP.  2000.  Localization and Signaling of G(beta) Subunit Ste4p are Controlled by A-factor Receptor and the A-specific Protein Asg7p. Mol Cell Biol. 20:8826-8835. Abstract
Haploid yeast cells initiate pheromone signaling upon the binding of pheromone to its receptor and activation of the coupled G protein. A regulatory process termed receptor inhibition blocks pheromone signaling when the a-factor receptor is inappropriately expressed in MATa cells. Receptor inhibition blocks signaling by inhibiting the activity of the G protein beta subunit, Ste4p. To investigate how Ste4p activity is inhibited, its subcellular location was examined. In wild-type cells, alpha-factor treatment resulted in localization of Ste4p to the plasma membrane of mating projections. In cells expressing the a-factor receptor, alpha-factor treatment resulted in localization of Ste4p away from the plasma membrane to an internal compartment. An altered version of Ste4p that is largely insensitive to receptor inhibition retained its association with the membrane in cells expressing the a-factor receptor. The inhibitory function of the a-factor receptor required ASG7, an a-specific gene of previously unknown function. ASG7 RNA was induced by pheromone, consistent with increased inhibition as the pheromone response progresses. The a-factor receptor inhibited signaling in its liganded state, demonstrating that the receptor can block the signal that it initiates. ASG7 was required for the altered localization of Ste4p that occurs during receptor inhibition, and the subcellular location of Asg7p was consistent with its having a direct effect on Ste4p localization. These results demonstrate that Asg7p mediates a regulatory process that blocks signaling from a G protein beta subunit and causes its relocalization within the cell.
Kim, Y, Ebright YW, Goodman AR, Reinberg D, Ebright RH.  2008.  Nonradioactive, ultrasensitive site-specific protein-protein photocrosslinking: interactions of alpha-helix 2 of TATA-binding protein with general transcription factor TFIIA and transcriptional repressor NC2.. Nucleic acids research. 36(19):6143-54. Abstract
We have developed an approach that enables nonradioactive, ultrasensitive (attamole sensitivity) site-specific protein-protein photocrosslinking, and we have applied the approach to the analysis of interactions of alpha-helix 2 (H2) of human TATA-element binding protein (TBP) with general transcription factor TFIIA and transcriptional repressor NC2. We have found that TBP H2 can be crosslinked to TFIIA in the TFIIA-TBP-DNA complex and in higher order transcription-initiation complexes, and we have mapped the crosslink to the 'connector' region of the TFIIA alpha/beta subunit (TFIIAalpha/beta). We further have found that TBP H2 can be crosslinked to NC2 in the NC2-TBP-DNA complex, and we have mapped the crosslink to the C-terminal 'tail' of the NC2 alpha-subunit (NC2alpha). Interactions of TBP H2 with the TFIIAalpha/beta connector and the NC2alpha C-terminal tail were not observed in crystal structures of TFIIA-TBP-DNA and NC2-TBP-DNA complexes, since relevant segments of TFIIA and NC2 were not present in truncated TFIIA and NC2 derivatives used for crystallization. We propose that interactions of TBP H2 with the TFIIAalpha/beta connector and the NC2alpha C-terminal tail provide an explanation for genetic results suggesting importance of TBP H2 in TBP-TFIIA interactions and TBP-NC2 interactions, and provide an explanation-steric exclusion-for competition between TFIIA and NC2.
Kim, TK, Ebright RH, Reinberg D.  2000.  Mechanism of ATP-dependent promoter melting by transcription factor IIH.. Science (New York, N.Y.). 288(5470):1418-22. Abstract
We show that transcription factor IIH ERCC3 subunit, the DNA helicase responsible for adenosine triphosphate (ATP)-dependent promoter melting during transcription initiation, does not interact with the promoter region that undergoes melting but instead interacts with DNA downstream of this region. We show further that promoter melting does not change protein-DNA interactions upstream of the region that undergoes melting but does change interactions within and downstream of this region. Our results rule out the proposal that IIH functions in promoter melting through a conventional DNA-helicase mechanism. We propose that IIH functions as a molecular wrench: rotating downstream DNA relative to fixed upstream protein-DNA interactions, thereby generating torque on, and melting, the intervening DNA.
Kim, J, Irvine KD, Carroll SB.  1995.  Cell recognition, signal induction, and symmetrical gene activation at the dorsal-ventral boundary of the developing Drosophila wing. Cell. 82:795-802. AbstractWebsite
Appendage formation in insects and vertebrates depends upon signals from both the anterior-posterior and dorsal-ventral (DV) axes. In Drosophila, wing formation is organized symmetrically around the DV boundary of the growing wing imaginal disc and requires interactions between dorsal and ventral cells. Compartmentalization of the wing disc, dorsal cell behavior, and the expression of two dorsally expressed putative signaling molecules, fringe (fng) and Serrate (Ser), are regulated by the apterous selector gene. Here, we demonstrate that fng and Ser have distinct roles in a novel cell recognition and signal induction process. fng serves as a boundary-determining molecule such that Ser is induced wherever cells expressing fng and cells not expressing fng are juxtaposed. Ser in turn triggers the expression of genes involved in wing growth and patterning on both sides of the DV boundary.
Kim, YI, Vinyard DJ, Ananyev GM, Dismukes CG, Golden SS.  2012.  Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator.. Proceedings of the National Academy of Sciences of the United States of America. 109(44):17765-9. Abstract
Synchronization of the circadian clock in cyanobacteria with the day/night cycle proceeds without an obvious photoreceptor, leaving open the question of its specific mechanism. The circadian oscillator can be reconstituted in vitro, where the activities of two of its proteins, KaiA and KaiC, are affected by metabolites that reflect photosynthetic activity: KaiC phosphorylation is directly influenced by the ATP/ADP ratio, and KaiA stimulation of KaiC phosphorylation is blocked by oxidized, but not reduced, quinones. Manipulation of the ATP/ADP ratio can reset the timing of KaiC phosphorylation peaks in the reconstituted in vitro oscillator. Here, we show that pulses of oxidized quinones reset the cyanobacterial circadian clock both in vitro and in vivo. Onset of darkness causes an abrupt oxidation of the plastoquinone pool in vivo, which is in contrast to a gradual decrease in the ATP/ADP ratio that falls over the course of hours until the onset of light. Thus, these two metabolic measures of photosynthetic activity act in concert to signal both the onset and duration of darkness to the cyanobacterial clock.
Kim, TK, Lagrange T, Wang YH, Griffith JD, Reinberg D, Ebright RH.  1997.  Trajectory of DNA in the RNA polymerase II transcription preinitiation complex.. Proceedings of the National Academy of Sciences of the United States of America. 94(23):12268-73. Abstract
By using site-specific protein-DNA photocrosslinking, we define the positions of TATA-binding protein, transcription factor IIB, transcription factor IIF, and subunits of RNA polymerase II (RNAPII) relative to promoter DNA within the human transcription preinitiation complex. The results indicate that the interface between the largest and second-largest subunits of RNAPII forms an extended, approximately 240 A channel that interacts with promoter DNA both upstream and downstream of the transcription start. By using electron microscopy, we show that RNAPII compacts promoter DNA by the equivalent of approximately 50 bp. Together with the published structure of RNAPII, the results indicate that RNAPII wraps DNA around its surface and suggest a specific model for the trajectory of the wrapped DNA.
Kirihara, JA, Hunsperger JP, Mahoney WC, Messing JW.  1988.  Differential expression of a gene for a methionine-rich storage protein in maize. Molecular & general genetics : MGG. 211:477-84. AbstractWebsite
A methionine-rich 10 kDa zein storage protein from maize was isolated and the sequence of the N-terminal 30 amino acids was determined. Based on the amino acid sequence, two mixed oligonucleotides were synthesized and used to probe a maize endosperm cDNA library. A full-length cDNA clone encoding the 10 kDa zein was isolated by this procedure. The nucleotide sequence of the cDNA clone predicts a polypeptide of 129 amino acids, preceded by a signal peptide of 21 amino acids. The predicted polypeptide is unique in its extremely high content of methionine (22.5%). The maize inbred line BSSS-53, which has increased seed methionine due to overproduction of this protein, was compared to W23, a standard inbred line. Northern blot analysis showed that the relative RNA levels for the 10 kDa zein were enhanced in developing seeds of BSSS-53, providing a molecular basis for the overproduction of the protein. Southern blot analysis indicated that there are one or two 10 kDa zein genes in the maize genome.
Kirihara, JA, Petri JB, Messing J.  1988.  Isolation and sequence of a gene encoding a methionine-rich 10-kDa zein protein from maize. Gene. 71:359-70. AbstractWebsite
We have isolated the gene encoding a methionine-rich 10-kDa zein protein from a lambda EMBL3 maize genomic 'mini' library of the inbred line BSSS-53 and determined its nucleotide sequence. The sequence matches perfectly with a cDNA clone from the inbred line W22 (which has the same restriction fragment length polymorphism as many inbred lines tested) indicating that we have isolated a functional storage protein gene that is very conserved in maize. This comparison also excludes any splicing of any precursor mRNA and therefore any presence of introns. A number of potential regulatory sequences have been located in the flanking regions. The 10-kDa-zein gene represents the last size class in the zein multigene family to be characterized. Its structure allows us now to re-examine the relationship of all the zein proteins and also to compare the structure of a new class of storage proteins that are rich in methionine, an essential amino acid in livestock fodder.
Kirilly, D, Spana EP, Perrimon N, Padgett RW, Xie T.  2005.  BMP signaling is required for controlling somatic stem cell self-renewal in the Drosophila ovary. Developmental cell. 9:651-62. AbstractWebsite
BMP signaling is essential for promoting self-renewal of mouse embryonic stem cells and Drosophila germline stem cells and for repressing stem cell proliferation in the mouse intestine and skin. However, it remains unknown whether BMP signaling can promote self-renewal of adult somatic stem cells. In this study, we show that BMP signaling is necessary and sufficient for promoting self-renewal and proliferation of somatic stem cells (SSCs) in the Drosophila ovary. BMP signaling is required in SSCs to directly control their maintenance and division, but is dispensable for proliferation of their differentiated progeny. Furthermore, BMP signaling is required to control SSC self-renewal, but not survival. Moreover, constitutive BMP signaling prolongs the SSC lifespan. Therefore, our study clearly demonstrates that BMP signaling directly promotes SSC self-renewal and proliferation in the Drosophila ovary. Our work further suggests that BMP signaling could promote self-renewal of adult stem cells in other systems.
Kittiwongwattana, C, Lutz K, Clark M, Maliga P.  2007.  Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol. Biol.. 64:137-43. AbstractWebsite
Marker genes are essential for selective amplification of rare transformed plastid genome copies to obtain genetically stable transplastomic plants. However, the marker gene becomes dispensable when homoplastomic plants are obtained. Here we report excision of plastid marker genes by the phiC31 phage site-specific integrase (Int) that mediates recombination between bacterial (attB) and phage (attP) attachment sites. We tested marker gene excision in a two-step process. First we transformed the tobacco plastid genome with the pCK2 vector in which the spectinomycin resistance (aadA) marker gene is flanked with suitably oriented attB and attP sites. The transformed plastid genomes were stable in the absence of Int. We then transformed the nucleus with a gene encoding a plastid-targeted Int that led to efficient marker gene excision. The aadA marker free Nt-pCK2-Int plants were resistant to phosphinothricin herbicides since the pCK2 plastid vector also carried a bar herbicide resistance gene that, due to the choice of its promoter, causes a yellowish-golden (aurea) phenotype. Int-mediated marker excision reported here is an alternative to the currently used CRE/loxP plastid marker excision system and expands the repertoire of the tools available for the manipulation of the plastid genome.
Klimuk, E, Akulenko N, Makarova KS, Ceyssens P-J, Lavigne R, Severinov K.  2013.  Host RNA polymerase inhibitors encoded by φKMV-like phages of Pseudomonas. Virology. 436:67-74.
Knight, JL, Mekler V, Mukhopadhyay J, Ebright RH, Levy RM.  2005.  Distance-restrained docking of rifampicin and rifamycin SV to RNA polymerase using systematic FRET measurements: developing benchmarks of model quality and reliability.. Biophysical journal. 88(2):925-38. Abstract
We are developing distance-restrained docking strategies for modeling macromolecular complexes that combine available high-resolution structures of the components and intercomponent distance restraints derived from systematic fluorescence resonance energy transfer (FRET) measurements. In this article, we consider the problem of docking small-molecule ligands within macromolecular complexes. Using simulated FRET data, we have generated a series of benchmarks that permit estimation of model accuracy based on the quantity and quality of FRET-derived distance restraints, including the number, random error, systematic error, distance distribution, and radial distribution of FRET-derived distance restraints. We find that expected model accuracy is 10 A or better for models based on: i), > or =20 restraints with up to 15% random error and no systematic error, or ii), > or =20 restraints with up to 15% random error, up to 10% systematic error, and a symmetric radial distribution of restraints. Model accuracies can be improved to 5 A or better by increasing the number of restraints to > or =40 and/or by optimizing the distance distribution of restraints. Using experimental FRET data, we have defined the positions of the binding sites within bacterial RNA polymerase of the small-molecule inhibitors rifampicin (Rif) and rifamycin SV (Rif SV). The inferred binding sites for Rif and Rif SV were located with accuracies of, respectively, 7 and 10 A relative to the crystallographically defined binding site for Rif. These accuracies agree with expectations from the benchmark simulations and suffice to indicate that the binding sites for Rif and Rif SV are located within the RNA polymerase active-center cleft, overlapping the binding site for the RNA-DNA hybrid.
Knobel, KM, Peden EM, Barr MM.  2008.  Distinct Protein Domains Regulate Ciliary Targeting and Function of C. Elegans PKD-2. Exp Cell Res. 314:825-833. Abstract
TRPP2 (transient receptor potential polycystin-2) channels function in a range of cells where they are localized to specific subcellular regions including the endoplasmic reticulum (ER) and primary cilium. In humans, TRPP2/PC-2 mutations severely compromise kidney function and cause autosomal dominant polycystic kidney disease (ADPKD). The Caenorhabditis elegans TRPP2 homolog, PKD-2, is restricted to the somatodendritic (cell body and dendrite) and ciliary compartments of male specific sensory neurons. Within these neurons PKD-2 function is required for sensation. To understand the mechanisms regulating TRPP2 subcellular distribution and activity, we performed in vivo structure-function-localization studies using C. elegans as a model system. Our data demonstrate that somatodendritic and ciliary targeting requires the transmembrane (TM) region of PKD-2 and that the PKD-2 cytosolic termini regulate subcellular distribution and function. Within neuronal cell bodies, PKD-2 colocalizes with the OSM-9 TRP vanilloid (TRPV) channel, suggesting that these TRPP and TRPV channels may function in a common process. When human TRPP2/PC-2 is heterologously expressed in transgenic C. elegans animals, PC-2 does not visibly localize to cilia but does partially rescue pkd-2 null mutant defects, suggesting that human PC-2 and PKD-2 are functional homologs.
Koles, K, Irvine KD, Panin VM.  2004.  Functional characterization of Drosophila sialyltransferase. The Journal of biological chemistry. 279:4346-57. AbstractWebsite
Sialylation is an important carbohydrate modification of glycoconjugates in the deuterostome lineage of animals. By contrast, the evidence for sialylation in protostomes has been scarce and somewhat controversial. In the present study, we characterize a Drosophila sialyltransferase gene, thus providing experimental evidence for the presence of sialylation in protostomes. This gene encodes a functional alpha2-6-sialyltransferase (SiaT) that is closely related to the vertebrate ST6Gal sialyltransferase family, indicating an ancient evolutionary origin for this family. Characterization of recombinant, purified Drosophila SiaT revealed a novel acceptor specificity as it exhibits highest activity toward GalNAcbeta1-4GlcNAc carbohydrate structures at the non-reducing termini of oligosaccharides and glycoprotein glycans. Oligosaccharides are preferred over glycoproteins as acceptors, and no activity toward glycolipid acceptors was detected. Recombinant Drosophila SiaT expressed in cultured insect cells possesses in vivo and in vitro autosialylation activity toward beta-linked GalNAc termini of its own N-linked glycans, thus representing the first example of a sialylated insect glycoconjugate. In situ hybridization revealed that Drosophila SiaT is expressed during embryonic development in a tissue- and stage-specific fashion, with elevated expression in a subset of cells within the central nervous system. The identification of a SiaT in Drosophila provides a new evolutionary perspective for considering the diverse functions of sialylation and, through the powerful genetic tools available in this system, a means of elucidating functions for sialylation in protostomes.
Kolling, DR, Cox N, Ananyev GM, Pace RJ, Dismukes CG.  2012.  What are the oxidation states of manganese required to catalyze photosynthetic water oxidation? Biophysical journal. 103(2):313-22. Abstract
Photosynthetic O(2) production from water is catalyzed by a cluster of four manganese ions and a tyrosine residue that comprise the redox-active components of the water-oxidizing complex (WOC) of photosystem II (PSII) in all known oxygenic phototrophs. Knowledge of the oxidation states is indispensable for understanding the fundamental principles of catalysis by PSII and the catalytic mechanism of the WOC. Previous spectroscopic studies and redox titrations predicted the net oxidation state of the S(0) state to be (Mn(III))(3)Mn(IV). We have refined a previously developed photoassembly procedure that directly determines the number of oxidizing equivalents needed to assemble the Mn(4)Ca core of WOC during photoassembly, starting from free Mn(II) and the Mn-depleted apo-WOC complex. This experiment entails counting the number of light flashes required to produce the first O(2) molecules during photoassembly. Unlike spectroscopic methods, this process does not require reference to synthetic model complexes. We find the number of photoassembly intermediates required to reach the lowest oxidation state of the WOC, S(0), to be three, indicating a net oxidation state three equivalents above four Mn(II), formally (Mn(III))(3)Mn(II), whereas the O(2) releasing state, S(4), corresponds formally to (Mn(IV))(3)Mn(III). The results from this study have major implications for proposed mechanisms of photosynthetic water oxidation.
Koppen, M, Simske JS, Sims PA, Firestein BL, Hall DH, Radice AD, Rongo C, Hardin JD.  2001.  Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia. Nat Cell Biol. 3:983-91. AbstractWebsite
The function of epithelial cell sheets depends on the integrity of specialized cell-cell junctions that connect neighbouring cells. We have characterized the novel coiled-coil protein AJM-1, which localizes to an apical junctional domain of Caenorhabditis elegans epithelia basal to the HMR-HMP (cadherin-catenin) complex. In the absence of AJM-1, the integrity of this domain is compromised. Proper AJM-1 localization requires LET-413 and DLG-1, homologues of the Drosophila tumour suppressors Scribble and Discs large, respectively. DLG-1 physically interacts with AJM-1 and is required for its normal apical distribution, and LET-413 mediates the rapid accumulation of both DLG-1 and AJM-1 in the apical domain. In the absence of both dlg-1 and let-413 function AJM-1 is almost completely lost from apical junctions in embryos, whereas HMP-1 (alpha-catenin) localization is only mildly affected. We conclude that LET-413 and DLG-1 cooperatively control AJM-1 localization and that AJM-1 controls the integrity of a distinct apical junctional domain in C. elegans.
Kramer, LB, Shim J, Previtera ML, Isack NR, Lee MC, Firestein BL, Rongo C.  2010.  UEV-1 is an ubiquitin-conjugating enzyme variant that regulates glutamate receptor trafficking in C. elegans neurons. PLoS One. 5:e14291. AbstractWebsite
The regulation of AMPA-type glutamate receptor (AMPAR) membrane trafficking is a key mechanism by which neurons regulate synaptic strength and plasticity. AMPAR trafficking is modulated through a combination of receptor phosphorylation, ubiquitination, endocytosis, and recycling, yet the factors that mediate these processes are just beginning to be uncovered. Here we identify the ubiquitin-conjugating enzyme variant UEV-1 as a regulator of AMPAR trafficking in vivo. We identified mutations in uev-1 in a genetic screen for mutants with altered trafficking of the AMPAR subunit GLR-1 in C. elegans interneurons. Loss of uev-1 activity results in the accumulation of GLR-1 in elongated accretions in neuron cell bodies and along the ventral cord neurites. Mutants also have a corresponding behavioral defect--a decrease in spontaneous reversals in locomotion--consistent with diminished GLR-1 function. The localization of other synaptic proteins in uev-1-mutant interneurons appears normal, indicating that the GLR-1 trafficking defects are not due to gross deficiencies in synapse formation or overall protein trafficking. We provide evidence that GLR-1 accumulates at RAB-10-containing endosomes in uev-1 mutants, and that receptors arrive at these endosomes independent of clathrin-mediated endocytosis. UEV-1 homologs in other species bind to the ubiquitin-conjugating enzyme Ubc13 to create K63-linked polyubiquitin chains on substrate proteins. We find that whereas UEV-1 can interact with C. elegans UBC-13, global levels of K63-linked ubiquitination throughout nematodes appear to be unaffected in uev-1 mutants, even though UEV-1 is broadly expressed in most tissues. Nevertheless, ubc-13 mutants are similar in phenotype to uev-1 mutants, suggesting that the two proteins do work together to regulate GLR-1 trafficking. Our results suggest that UEV-1 could regulate a small subset of K63-linked ubiquitination events in nematodes, at least one of which is critical in regulating GLR-1 trafficking.