Publications

Book Chapter
Messing, J, Holding D.  2013.  Evolution, Structure, and Function of Prolamin Storage Proteins.. Seed Genomics. :139-158.
Messing, J, Bennetzen J.  2008.  Grass Genome Structure and Evolution. Genome Dynamics. 4:41-56.
Larkins, BA, Wu Y, Song R, Messing J.  2017.  Maize seed storage proteins. Maize Kernel Development. :175-189.
Nasr, I, Messing J, Ciclitira PJ.  2014.  Novel and Experimental Therapies on the Horizon. Celiac Disease, Clinical Gastroenterology. :193-208.
Zhang, W, Messing J.  2016.  PacBio for Haplotyping in Gene Families. Haplotyping. Methods in Molecular Biology 1551. :61-71.
Messing, J.  2009.  The Polyploid Origin of Maize. The Maize Handbook: Domestication, Genetics, and Genome. :221-238.
Messing, J.  2009.  The Structure of the Maize Genome. Molecular Genetic Approaches to Maize Improvement, Biotechnology in Agriculture and Forestry. 63:213-230.
Wu, Y, Messing J.  2017.  Understanding and improving protein traits in maize seeds. Achieving Sustainable Maize Cultivation. :115-128.
Journal Article
Bolot, S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J.  2009.  The 'inner circle' of the cereal genomes. Curr Opin Plant Biol. 12:119-25. AbstractWebsite
Early marker-based macrocolinearity studies between the grass genomes led to arranging their chromosomes into concentric 'crop circles' of synteny blocks that initially consisted of 30 rice-independent linkage groups representing the ancestral cereal genome structure. Recently, increased marker density and genome sequencing of several cereal genomes allowed the characterization of intragenomic duplications and their integration with intergenomic colinearity data to identify paleo-duplications and propose a model for the evolution of the grass genomes from a common ancestor. On the basis of these data an 'inner circle' comprising five ancestral chromosomes was defined providing a new reference for the grass chromosomes and new insights into their ancestral relationships and origin, as well as an efficient tool to design cross-genome markers for genetic studies.
Chaudhuri, S, Messing J.  1994.  Allele-specific parental imprinting of dzr1, a posttranscriptional regulator of zein accumulation. Proceedings of the National Academy of Sciences of the United States of America. 91:4867-71. AbstractWebsite
Parental imprinting describes the phenomenon of unequivalent gene function based on transmission from the female or male parent. We have discovered parental imprinting of an allele of the dzr1 locus that posttranscriptionally regulates the accumulation of 10-kDa zein in the maize endosperm. The imprinted allele of MO17 inbred origin, dzr1 + MO17, conditions low accumulation of the 10-kDa zein and is dominant when transmitted through the female but recessive when transmitted through the male. Analyzing endosperms with equal parental contributions of dzr1 + MO17 ruled out the possibility that the unequivalent phenotype of dzr1 + MO17 was due to parental dosage imbalance in the triploid endosperm. Second-generation studies show that the dominant or recessive phenotype of dzr1 + MO17 is determined at every generation based on immediate parental origin with no grandparental effect.
Llaca, V, Messing J.  1998.  Amplicons of maize zein genes are conserved within genic but expanded and constricted in intergenic regions. The Plant journal : for cell and molecular biology. 15:211-20. AbstractWebsite
The 78,101 base pair long sequence of a cluster of 22-kDa alpha zein genes in the maize inbred BSSS53 was determined. Each zein gene is contained within a repeat unit that varies in length. If such a repeat, or amplicon, is aligned along the entire sequence, a 10.5-fold sequence amplification is delineated. Because of insertions and deletions in intergenic regions, many of the zein genes are spaced over different distances. Only three out of 10 zein-related sequences have an intact open reading frame, indicating an unusual large number of genes unable to contribute to the accumulation of normal-size 22-kDa zein proteins. It is proposed that the seven remaining zein-related sequences be considered gene reserves because of their potential to be restored by gene conversion. Intergenic insertions in the cluster range from 1098 to 14,896 base pairs. Although they are composed of transposable element sequences, they also contain additional open reading frames, two of them showing homology to rice cDNA sequences. The average amplicon is 4423 base pairs long, with the sequence surrounding each zein gene more than 90% conserved. Coincidently, the size of the amplicon is equivalent to the average gene density (one gene within 4640 bp) in the Arabidopsis thaliana genome, one of the smallest in plants. Successive steps of amplification and insertion of DNA might explain to a certain degree how genome size variation has been generated in plants.
Xu, JH, Messing J.  2009.  Amplification of prolamin storage protein genes in different subfamilies of the Poaceae. Theor Appl Genet. AbstractWebsite
Prolamins are seed storage proteins in cereals and represent an important source of essential amino acids for feed and food. Genes encoding these proteins resulted from dispersed and tandem amplification. While previous studies have concentrated on protein sequences from different grass species, we now can add a new perspective to their relationships by asking how their genes are shared by ancestry and copied in different lineages of the same family of species. These differences are derived from alignment of chromosomal regions, where collinearity is used to identify prolamin genes in syntenic positions, also called orthologous gene copies. New or paralogous gene copies are inserted in tandem or new locations of the same genome. More importantly, one can detect the loss of older genes. We analyzed chromosomal intervals containing prolamin genes from rice, sorghum, wheat, barley, and Brachypodium, representing different subfamilies of the Poaceae. The Poaceae commonly known as the grasses includes three major subfamilies, the Ehrhartoideae (rice), Pooideae (wheat, barley, and Brachypodium), and Panicoideae (millets, maize, sorghum, and switchgrass). Based on chromosomal position and sequence divergence, it becomes possible to infer the order of gene amplification events. Furthermore, the loss of older genes in different subfamilies seems to permit a faster pace of divergence of paralogous genes. Change in protein structure affects their physical properties, subcellular location, and amino acid composition. On the other hand, regulatory sequence elements and corresponding transcriptional activators of new gene copies are more conserved than coding sequences, consistent with the tissue-specific expression of these genes.
Wang, W, Messing J.  2012.  Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed). BMC Plant Biol. 12:5. AbstractWebsite
BACKGROUND: Aquatic plants differ in their development from terrestrial plants in their morphology and physiology, but little is known about the molecular basis of the major phases of their life cycle. Interestingly, in place of seeds of terrestrial plants their dormant phase is represented by turions, which circumvents sexual reproduction. However, like seeds turions provide energy storage for starting the next growing season. RESULTS: To begin a characterization of the transition from the growth to the dormant phase we used abscisic acid (ABA), a plant hormone, to induce controlled turion formation in Spirodela polyrhiza and investigated their differentiation from fronds, representing their growth phase, into turions with respect to morphological, ultra-structural characteristics, and starch content. Turions were rich in anthocyanin pigmentation and had a density that submerged them to the bottom of liquid medium. Transmission electron microscopy (TEM) of turions showed in comparison to fronds shrunken vacuoles, smaller intercellular space, and abundant starch granules surrounded by thylakoid membranes. Turions accumulated more than 60% starch in dry mass after two weeks of ABA treatment. To further understand the mechanism of the developmental switch from fronds to turions, we cloned and sequenced the genes of three large-subunit ADP-glucose pyrophosphorylases (APLs). All three putative protein and exon sequences were conserved, but the corresponding genomic sequences were extremely variable mainly due to the invasion of miniature inverted-repeat transposable elements (MITEs) into introns. A molecular three-dimensional model of the SpAPLs was consistent with their regulatory mechanism in the interaction with the substrate (ATP) and allosteric activator (3-PGA) to permit conformational changes of its structure. Gene expression analysis revealed that each gene was associated with distinct temporal expression during turion formation. APL2 and APL3 were highly expressed in earlier stages of turion development, while APL1 expression was reduced throughout turion development. CONCLUSIONS: These results suggest that the differential expression of APLs could be used to enhance energy flow from photosynthesis to storage of carbon in aquatic plants, making duckweeds a useful alternative biofuel feedstock.
Dong, J, Feng Y, Kumar D, Zhang W, Zhu T, Luo M-C, Messing J.  2016.  Analysis of tandem gene copies in maize chromosomal regions reconstructed from long sequence reads.. Proceedings of the National Academy of Sciences of the United States of America. 113(29):7949-56. Abstract
Haplotype variation not only involves SNPs but also insertions and deletions, in particular gene copy number variations. However, comparisons of individual genomes have been difficult because traditional sequencing methods give too short reads to unambiguously reconstruct chromosomal regions containing repetitive DNA sequences. An example of such a case is the protein gene family in maize that acts as a sink for reduced nitrogen in the seed. Previously, 41-48 gene copies of the alpha zein gene family that spread over six loci spanning between 30- and 500-kb chromosomal regions have been described in two Iowa Stiff Stalk (SS) inbreds. Analyses of those regions were possible because of overlapping BAC clones, generated by an expensive and labor-intensive approach. Here we used single-molecule real-time (Pacific Biosciences) shotgun sequencing to assemble the six chromosomal regions from the Non-Stiff Stalk maize inbred W22 from a single DNA sequence dataset. To validate the reconstructed regions, we developed an optical map (BioNano genome map; BioNano Genomics) of W22 and found agreement between the two datasets. Using the sequences of full-length cDNAs from W22, we found that the error rate of PacBio sequencing seemed to be less than 0.1% after autocorrection and assembly. Expressed genes, some with premature stop codons, are interspersed with nonexpressed genes, giving rise to genotype-specific expression differences. Alignment of these regions with those from the previous analyzed regions of SS lines exhibits in part dramatic differences between these two heterotic groups.
Murat, F, Xu JH, Tannier E, Abrouk M, Guilhot N, Pont C, Messing J, Salse J.  2010.  Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res. 20:1545-57. AbstractWebsite
The comparison of the chromosome numbers of today's species with common reconstructed paleo-ancestors has led to intense speculation of how chromosomes have been rearranged over time in mammals. However, similar studies in plants with respect to genome evolution as well as molecular mechanisms leading to mosaic synteny blocks have been lacking due to relevant examples of evolutionary zooms from genomic sequences. Such studies require genomes of species that belong to the same family but are diverged to fall into different subfamilies. Our most important crops belong to the family of the grasses, where a number of genomes have now been sequenced. Based on detailed paleogenomics, using inference from n = 5-12 grass ancestral karyotypes (AGKs) in terms of gene content and order, we delineated sequence intervals comprising a complete set of junction break points of orthologous regions from rice, maize, sorghum, and Brachypodium genomes, representing three different subfamilies and different polyploidization events. By focusing on these sequence intervals, we could show that the chromosome number variation/reduction from the n = 12 common paleo-ancestor was driven by nonrandom centric double-strand break repair events. It appeared that the centromeric/telomeric illegitimate recombination between nonhomologous chromosomes led to nested chromosome fusions (NCFs) and synteny break points (SBPs). When intervals comprising NCFs were compared in their structure, we concluded that SBPs (1) were meiotic recombination hotspots, (2) corresponded to high sequence turnover loci through repeat invasion, and (3) might be considered as hotspots of evolutionary novelty that could act as a reservoir for producing adaptive phenotypes.
Larson, R, Messing J.  1982.  Apple II software for M13 shotgun DNA sequencing. Nucleic acids research. 10:39-49. AbstractWebsite
A set of programs is presented for the reconstruction of a DNA sequence from data generated by the M13 shotgun sequencing technique. Once the sequence has been established and stored other programs are used for its analysis. The programs have been written for the Apple II microcomputer. A minimum investment is required for the hardware and the software is easily interchangeable between the growing number of interested researchers. Copies are available in ready to use form.
Wu, Y, Wang W, Messing J.  2012.  Balancing of sulfur storage in maize seed. BMC plant biology. 12:77. AbstractWebsite
A balanced composition of amino acids in seed flour is critical because of the demand on essential amino acids for nutrition. However, seed proteins in cereals like maize, the crop with the highest yield, are low in lysine, tryptophan, and methionine. Although supplementation with legumes like soybean can compensate lysine deficiency, both crops are also relatively low in methionine. Therefore, understanding the mechanism of methionine accumulation in the seed could be a basis for breeding cultivars with superior nutritional quality.
Park, W, Li J, Song R, Messing J, Chen X.  2002.  CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current biology : CB. 12:1484-95. AbstractWebsite
BACKGROUND: In metazoans, microRNAs, or miRNAs, constitute a growing family of small regulatory RNAs that are usually 19-25 nucleotides in length. They are processed from longer precursor RNAs that fold into stem-loop structures by the ribonuclease Dicer and are thought to regulate gene expression by base pairing with RNAs of protein-coding genes. In Arabidopsis thaliana, mutations in CARPEL FACTORY (CAF), a Dicer homolog, and those in a novel gene, HEN1, result in similar, multifaceted developmental defects, suggesting a similar function of the two genes, possibly in miRNA metabolism.RESULTS: To investigate the potential functions of CAF and HEN1 in miRNA metabolism, we aimed to isolate miRNAs from Arabidopsis and examine their accumulation during plant development in wild-type plants and in hen1-1 and caf-1 mutant plants. We have isolated 11 miRNAs, some of which have potential homologs in tobacco, rice, and maize. The putative precursors of these miRNAs have the capacity to form stable stem-loop structures. The accumulation of these miRNAs appears to be spatially or temporally controlled in plant development, and their abundance is greatly reduced in caf-1 and hen1-1 mutants. HEN1 homologs are found in bacterial, fungal, and metazoan genomes.CONCLUSIONS: miRNAs are present in both plant and animal kingdoms. An evolutionarily conserved mechanism involving a protein, known as Dicer in animals and CAF in Arabidopsis, operates in miRNA metabolism. HEN1 is a new player in miRNA accumulation in Arabidopsis, and HEN1 homologs in metazoans may have a similar function. The developmental defects associated with caf-1 and hen1-1 mutations and the patterns of miRNA accumulation suggest that miRNAs play fundamental roles in plant development.
Goettel, W, Messing J.  2009.  Change of gene structure and function by non-homologous end-joining, homologous recombination, and transposition of DNA. PLoS Genet. 5:e1000516. AbstractWebsite
An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization.
Lai, J, Dey N, Kim CS, Bharti AK, Rudd S, Mayer KF, Larkins BA, Becraft P, Messing J.  2004.  Characterization of the maize endosperm transcriptome and its comparison to the rice genome. Genome research. 14:1932-7. AbstractWebsite
The cereal endosperm is a major organ of the seed and an important component of the world's food supply. To understand the development and physiology of the endosperm of cereal seeds, we focused on the identification of genes expressed at various times during maize endosperm development. We constructed several cDNA libraries to identify full-length clones and subjected them to a twofold enrichment. A total of 23,348 high-quality sequence-reads from 5'- and 3'-ends of cDNAs were generated and assembled into a unigene set representing 5326 genes with paired sequence-reads. Additional sequencing yielded a total of 3160 (59%) completely sequenced, full-length cDNAs. From 5326 unigenes, 4139 (78%) can be aligned with 5367 predicted rice genes and by taking only the "best hit" be mapped to 3108 positions on the rice genome. The 22% unigenes not present in rice indicate a rapid change of gene content between rice and maize in only 50 million years. Differences in rice and maize gene numbers also suggest that maize has lost a large number of duplicated genes following tetraploidization. The larger number of gene copies in rice suggests that as many as 30% of its genes arose from gene amplification, which would extrapolate to a significant proportion of the estimated 44,027 candidate genes of its entire genome. Functional classification of the maize endosperm unigene set indicated that more than a fourth of the novel functionally assignable genes found in this study are involved in carbohydrate metabolism, consistent with its role as a storage organ.
Calvino, M., Bruggmann R, Messing J.  2011.  Characterization of the small RNA component of the transcriptome from grain and sweet sorghum stems. BMC Genomics. 12:356. AbstractWebsite
ABSTRACT: BACKGROUND: Sorghum belongs to the tribe of the Andropogoneae that includes potential biofuel crops like switchgrass, Miscanthus and successful biofuel crops like corn and sugarcane. However, from a genomics point of view sorghum has compared to these other species a simpler genome because it lacks the additional rounds of whole genome duplication events. Therefore, it has become possible to generate a high-quality genome sequence. Furthermore, cultivars exists that rival sugarcane in levels of stem sugar so that a genetic approach can be used to investigate which genes are differentially expressed to achieve high levels of stem sugar. RESULTS: Here, we characterized the small RNA component of the transcriptome from grain and sweet sorghum stems, and from F2 plants derived from their cross that segregated for sugar content and flowering time. We found that variation in miR172 and miR395 expression correlated with flowering time whereas variation in miR169 expression correlated with sugar content in stems. Interestingly, genotypic differences in the ratio of miR395 to miR395* were identified, with miR395* species expressed as abundantly as miR395 in sweet sorghum but not in grain sorghum. Finally, we provided experimental evidence for previously annotated miRNAs detecting the expression of 25 miRNA families from the 27 known and discovered 9 new miRNAs candidates in the sorghum genome. CONCLUSIONS: Sequencing the small RNA component of sorghum stem tissue provides us with experimental evidence for previously predicted microRNAs in the sorghum genome and microRNAs with a potential role in stem sugar accumulation and flowering time.
Cao, HX, Vu GT, Wang W, Messing J, Schubert I.  2015.  Chromatin organisation in duckweed interphase nuclei in relation to the nuclear DNA content. Plant Biol (Stuttg). 17 Suppl 1:120-4. AbstractWebsite
The accessibility of DNA during fundamental processes, such as transcription, replication and DNA repair, is tightly modulated through a dynamic chromatin structure. Differences in large-scale chromatin structure at the microscopic level can be observed as euchromatic and heterochromatic domains in interphase nuclei. Here, key epigenetic marks, including histone H3 methylation and 5-methylcytosine (5-mC) as a DNA modification, were studied cytologically to describe the chromatin organisation of representative species of the five duckweed genera in the context of their nuclear DNA content, which ranged from 158 to 1881 Mbp. All studied duckweeds, including Spirodela polyrhiza with a genome size and repeat proportion similar to that of Arabidopsis thaliana, showed dispersed distribution of heterochromatin signatures (5mC, H3K9me2 and H3K27me1). This immunolabelling pattern resembles that of early developmental stages of Arabidopsis nuclei, with less pronounced heterochromatin chromocenters and heterochromatic marks weakly dispersed throughout the nucleus.
Swigonova, Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J.  2004.  Close split of sorghum and maize genome progenitors. Genome research. 14:1916-23. AbstractWebsite
It is generally believed that maize (Zea mays L. ssp. mays) arose as a tetraploid; however, the two progenitor genomes cannot be unequivocally traced within the genome of modern maize. We have taken a new approach to investigate the origin of the maize genome. We isolated and sequenced large genomic fragments from the regions surrounding five duplicated loci from the maize genome and their orthologous loci in sorghum, and then we compared these sequences with the orthologous regions in the rice genome. Within the studied segments, we identified 11 genes that were conserved in location, order, and orientation. We performed phylogenetic and distance analyses and examined the patterns of estimated times of divergence for sorghum and maize gene orthologs and also the time of divergence for maize orthologs. Our results support a tetraploid origin of maize. This analysis also indicates contemporaneous divergence of the ancestral sorghum genome and the two maize progenitor genomes about 11.9 million years ago (Mya). On the basis of a putative conversion event detected for one of the genes, tetraploidization must have occurred before 4.8 Mya, and therefore, preceded the major maize genome expansion by gene amplification and retrotransposition.
Gardner, RC, Howarth AJ, Hahn P, Brown-Luedi M, Shepherd RJ, Messing J.  1981.  The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing. Nucleic acids research. 9:2871-88. AbstractWebsite
We have determined the complete primary structure (8031 base pairs) of an infectious clone of cauliflower mosaic virus strain CM1841. The sequence was obtained using the strategy of cloning shotgun restriction fragments in the sequencing vector M13mp7. Comparison of the CM1841 sequence with that published for another caMV strain (Strasbourg) reveals 4.4% changes, mostly nucleotide substitutions with a few small insertions and deletions. The six open reading frames in the sequence of the Strasbourg isolate are also present in CM1841.