Protein Quality

Geraghty, DE, Messing J, Rubenstein I.  1982.  Sequence analysis and comparison of cDNAs of the zein multigene family. The EMBO journal. 1:1329-35. AbstractWebsite
The nucleotide sequence of two zein cDNAs in hybrid plasmids A20 and B49 have been determined. The insert in A20 is 921 bp long including a 5' non-coding region of 60 nucleotides, preceded by what is believed to be an artifactual sequence of 41 nucleotides, and a 3' non-coding region of 87 nucleotides. The B49 insert is 467 bp long and includes approximately one-half the protein coding sequence as well as a 3' non-coding region of 97 nucleotides. These sequences have been compared with the previously published sequence of another zein clone, A30 . A20 and A30 , both encoding 19 000 mol. wt. zeins , have approximately 85% homology at the nucleotide level. The B49 sequence, corresponding to a 22 000 mol. wt. zein, has approximately 65% homology to either A20 or A30 . All three zeins share common features including nearly identical amino acid compositions. In addition, the tandem repeats of 20 amino acids first seen in A30 are also present in A20 and B49 .
Geraghty, D, Peifer MA, Rubenstein I, Messing J.  1981.  The primary structure of a plant storage protein: zein. Nucleic acids research. 9:5163-74. AbstractWebsite
The protein sequence of a representative of the zeins, the major storage proteins of maize, has been derived from the nucleotide sequence of a zein cDNA clone. This cDNA was sequence both by the Maxam and Gilbert and the M13-dideoxy techniques. The nucleotide sequence encompasses the non-translated 3' terminus of the mRNA, the entire coding sequence specifying both the mature zein protein and a small signal peptide, and a portion of the non-translated 5' region. The deduced amino acid composition and the amino-terminal amino acid sequence closely resemble those derived from chemical analysis of the zein protein fraction. The data presented represent the first complete amino acid sequence of a plant storage protein.
Song, R, Segal G, Messing J.  2004.  Expression of the sorghum 10-member kafirin gene cluster in maize endosperm. Nucleic acids research. 32:e189. AbstractWebsite
Functional analysis of chromosomal segments containing linked genes requires the insertion of contiguous genomic sequences from bacterial artificial chromosomes (BACs) into the genome. Therefore, we introduced a 90-kb large BAC clone carrying a 10-copy tandem array of kafirin storage protein genes from sorghum linkage group J, mixed with a selectable marker gene, directly into maize cells using the particle bombardment method. Transgenic plants were regenerated and seeds from eight different transgenic lines were produced. One such transgenic plant was selected that had the entire kafirin gene cluster on a single continuous DNA fragment spanning more than 45 kb integrated into its genome. When alcohol-soluble proteins from individual T2 and T3 seeds of this event were analyzed, significant levels of kafirin were found in addition to the endogenous zein storage proteins, demonstrating that the large exogenous DNA segment is stably integrated into the maize genome and expressed at high levels in subsequent generations. Therefore, we could provide a new utility of plant transformation by the particle bombardment method for functional genomics of multigene families and the modification of the nutritive quality of cereal grains. Despite a tandem array of highly homologous sequences at the transgenic locus, no gene silencing was observed, probably owing to the effects of co-transformed flanking sequences. The expression studies of the transgenic locus also revealed new features of storage protein gene promoters that differed from previous transient gene expression studies, thereby illustrating the significance of the concentration and configuration of DNA-protein interactions in the regulation of gene expression.
Song, R, Messing J.  2002.  Contiguous genomic DNA sequence comprising the 19-kD zein gene family from maize. Plant physiology. 130:1626-35. AbstractWebsite
A new approach has been undertaken to analyze the sequences and linear organization of the 19-kD zein genes in maize (Zea mays). A high-coverage, large-insert genomic library of the inbred line B73 based on bacterial artificial chromosomes was used to isolate a redundant set of clones containing members of the 19-kD zein gene family, which previously had been estimated to consist of 50 members. The redundant set of clones was used to create bins of overlapping clones that represented five distinct genomic regions. Representative clones containing the entire set of 19-kD zein genes were chosen from each region and sequenced. Seven bacterial artificial chromosome clones yielded 1,160 kb of genomic DNA. Three of them formed a contiguous sequence of 478 kb, the longest contiguous sequenced region of the maize genome. Altogether, these DNA sequences provide the linear organization of 25 19-kD zein genes, one-half the number previously estimated. It is suggested that the difference is because of haplotypes exhibiting different degrees of gene amplification in the zein multigene family. About one-half the genes present in B73 appear to be expressed. Because some active genes have only been duplicated recently, they are so conserved in their sequence that previous cDNA sequence analysis resulted in "unigenes" that were actually derived from different gene copies. This analysis also shows that the 22- and 19-kD zein gene families shared a common ancestor. Although both ancestral genes had the same incremental gene amplification, the 19-kD zein branch exhibited a greater degree of far-distance gene translocations than the 22-kD zein gene family.
Lai, J, Messing J.  2002.  Increasing maize seed methionine by mRNA stability. The Plant journal : for cell and molecular biology. 30:395-402. AbstractWebsite
The amino acid methionine is a common protein building block that is also important in other cellular processes. Plants, unlike animals, synthesize methionine de novo and are thus a dietary source of this nutrient. A new approach for using maize as a source of nutrient methionine is described. Maize seeds, a major component of animal feeds, have variable levels of protein-bound methionine. This variability is a result of post-transcriptional regulation of the Dzs10 gene, which encodes a seed-specific high-methionine storage protein. Here we eliminate methionine variability by identifying and replacing the cis-acting site for Dzs10 regulation using transgenic seeds. Interestingly, two different mechanisms affect mRNA accumulation, one dependent on and the other independent of the untranslated regions (UTRs) of Dzs10 RNA. Accumulation of chimeric Dzs10 mRNA was not reduced in hybrid crosses and was uncoupled from genomic imprinting by Dzr1, a regulator of Dzs10. Uniform high levels of Dzs10 protein were maintained over five backcross generations of the transgene. The increased level of methionine in these transgenic seeds allowed the formulation of a useful animal feed ration without the addition of synthetic methionine.
Schickler, H.  1993.  Repression of the high-methionine zein gene in the maize inbred line Mo17. Plant Journal. 3:221-229..Website
Ueda, T, Waverczak W, Ward K, Sher N, Ketudat M, Schmidt RJ, Messing J.  1992.  Mutations of the 22- and 27-kD zein promoters affect transactivation by the Opaque-2 protein. The Plant cell. 4:701-9. AbstractWebsite
By utilizing a homologous transient expression system, we have demonstrated that the Opaque-2 (O2) gene product O2 confers positive trans-regulation on a 22-kD zein promoter. This trans-acting function of the O2 protein is mediated by its sequence-specific binding to a cis element (the O2 target site) present in the 22-kD zein promoter. A multimer of a 32-bp promoter fragment containing this O2 target site confers transactivation by O2. A single nucleotide substitution in the O2 target sequence not only abolishes O2 binding in vitro, but also its response to transactivation by O2 in vivo. We have also demonstrated that an amino acid domain including the contiguous basic region and the heptameric leucine repeat is essential for the trans-acting function of the O2 protein. Similar but not identical O2 target sequence motifs can be found in the promoters of zein genes of different molecular weight classes. Conversion of such a motif in the 27-kD zein promoter to an exact O2 target sequence by site-directed mutagenesis was sufficient to increase the binding affinity of the O2 protein in vitro and to confer transactivation by O2 in vivo.
Cruz-Alvarez, M, Kirihara JA, Messing J.  1991.  Post-transcriptional regulation of methionine content in maize kernels. Molecular & general genetics : MGG. 225:331-9. AbstractWebsite
Message levels for a methionine-rich 10 kDa zein were determined in three inbred lines of maize and their reciprocal crosses at various stages during endosperm development. Inbred line BSSS-53, which overexpresses the 10 kDa protein in mature kernels, was shown to have higher mRNA levels in developing endosperm, as compared to inbred lines W23 and W64A. Differences in mRNA levels could not be explained by differences in transcription rate of the 10 kDa zein gene, indicating differential post-transcriptional regulation of this storage protein in the different inbred lines analyzed. Among progeny segregating for the BSSS-53 allele of the 10 kDa zein structural gene Zps10/(22), mRNA levels are independent of Zps10/(22) segregation, indicating that post-transcriptional regulation of mRNA levels takes place via a trans-acting mechanism. In the same progeny, mRNA levels are also independent of allelic segregation of the regulatory locus Zpr10/(22). Thus, the trans-acting factor encoded by Zpr10/(22) determines accumulation of 10 kDa zein at a translational or post-translational step. Multiple trans-acting factors are therefore involved in post-transcriptional regulation of the methionine-rich 10 kDa zein.
Kirihara, JA, Petri JB, Messing J.  1988.  Isolation and sequence of a gene encoding a methionine-rich 10-kDa zein protein from maize. Gene. 71:359-70. AbstractWebsite
We have isolated the gene encoding a methionine-rich 10-kDa zein protein from a lambda EMBL3 maize genomic 'mini' library of the inbred line BSSS-53 and determined its nucleotide sequence. The sequence matches perfectly with a cDNA clone from the inbred line W22 (which has the same restriction fragment length polymorphism as many inbred lines tested) indicating that we have isolated a functional storage protein gene that is very conserved in maize. This comparison also excludes any splicing of any precursor mRNA and therefore any presence of introns. A number of potential regulatory sequences have been located in the flanking regions. The 10-kDa-zein gene represents the last size class in the zein multigene family to be characterized. Its structure allows us now to re-examine the relationship of all the zein proteins and also to compare the structure of a new class of storage proteins that are rich in methionine, an essential amino acid in livestock fodder.
Kirihara, JA, Hunsperger JP, Mahoney WC, Messing JW.  1988.  Differential expression of a gene for a methionine-rich storage protein in maize. Molecular & general genetics : MGG. 211:477-84. AbstractWebsite
A methionine-rich 10 kDa zein storage protein from maize was isolated and the sequence of the N-terminal 30 amino acids was determined. Based on the amino acid sequence, two mixed oligonucleotides were synthesized and used to probe a maize endosperm cDNA library. A full-length cDNA clone encoding the 10 kDa zein was isolated by this procedure. The nucleotide sequence of the cDNA clone predicts a polypeptide of 129 amino acids, preceded by a signal peptide of 21 amino acids. The predicted polypeptide is unique in its extremely high content of methionine (22.5%). The maize inbred line BSSS-53, which has increased seed methionine due to overproduction of this protein, was compared to W23, a standard inbred line. Northern blot analysis showed that the relative RNA levels for the 10 kDa zein were enhanced in developing seeds of BSSS-53, providing a molecular basis for the overproduction of the protein. Southern blot analysis indicated that there are one or two 10 kDa zein genes in the maize genome.