Protein Quality

Nasr, I, Messing J, Ciclitira PJ.  2014.  Novel and Experimental Therapies on the Horizon. Celiac Disease, Clinical Gastroenterology. :193-208.
Zhang, W, Ciclitira P, Messing J.  2014.  PacBio sequencing of gene families - a case study with wheat gluten genes. Gene. 533:541-6. AbstractWebsite
Amino acids in wheat (Triticum aestivum) seeds mainly accumulate in storage proteins called gliadins and glutenins. Gliadins contain alpha/beta-, gamma- and omega-types whereas glutenins contain HMW- and LMW-types. Known gliadin and glutenin sequences were largely determined through cloning and sequencing by capillary electrophoresis. This time-consuming process prevents us to intensively study the variation of each orthologous gene copy among cultivars. The throughput and sequencing length of Pacific Bioscience RS (PacBio) single molecule sequencing platform make it feasible to construct contiguous and non-chimeric RNA sequences. We assembled 424 wheat storage protein transcripts from ten wheat cultivars by using just one single-molecule-real-time cell. The protein genes from wheat cultivar Chinese Spring are comparable to known sequences from NCBI. We demonstrated real-time sequencing of gene families with high-throughput and low-cost. This method can be applied to studies of gene amplification and copy number variation among species and cultivars.
Wu, Y, Messing J.  2014.  Proteome balancing of the maize seed for higher nutritional value. Front Plant Sci. 5:240. AbstractWebsite
Most flowering plant seeds are composed of the embryo and endosperm, which are surrounded by maternal tissue, in particular the seed coat. Whereas the embryo is the dormant progeny, the endosperm is a terminal organ for storage of sugars and amino acids in proteins and carbohydrates, respectively. Produced in maternal leaves during photosynthesis, sugars, and amino acids are transported to developing seeds after flowering, and during germination they nourish early seedlings growth. Maize endosperm usually contains around 10% protein and 70% starch, and their composition ratio is rather stable, because it is strictly regulated through a pre-set genetic program that is woven by networks of many interacting or counteracting genes and pathways. Endosperm protein, however, is of low nutritional value due mainly to the high expression of the alpha-zein gene family, which encodes lysine-free proteins. Reduced levels of these proteins in the opaque 2 (o2) mutant and alpha-zein RNAi (RNA interference) transgenic seed is compensated by an increase of non-zein proteins, leading to the rebalancing of the nitrogen sink and producing more or less constant levels of total proteins in the seed. The same rebalancing of zeins and non-zeins has been observed for maize seeds bred for 30% protein. In contrast to the nitrogen sink, storage of sulfur is controlled through the accumulation of specialized sulfur-rich proteins in maize endosperm. Silencing the synthesis of alpha-zeins through RNAi fails to raise sulfur-rich proteins. Although overexpression of the methionine-rich delta-zein can increase the methionine level in seeds, it occurs at least in part at the expense of the cysteine-rich beta- and gamma-zeins, demonstrating a balance between cysteine and methionine in sulfur storage. Therefore, we propose that the throttle for the flow of sulfur is placed before the synthesis of sulfur amino acids when sulfur is taken up and reduced during photosynthesis.
Wu, Y, Messing J.  2012.  Rapid divergence of prolamin gene promoters of maize after gene amplification and dispersal. Genetics. 192:507-19. AbstractWebsite
Seeds have evolved to accommodate complicated processes like senescence, dormancy, and germination. Central to these is the storage of carbohydrates and proteins derived from sugars and amino acids synthesized during photosynthesis. In the grasses, the bulk of amino acids is stored in the prolamin superfamily that specifically accumulates in seed endosperm during senescence. Their promoters contain a conserved cis-element, called prolamin-box (P-box), recognized by the trans-activator P-box binding factor (PBF). Because of the lack of null mutants in all grass species, its physiological role in storage-protein gene expression has been elusive. In contrast, a null mutant of another endosperm-specific trans-activator Opaque2 (O2) has been shown to be required for the transcriptional activation of subsets of this superfamily by binding to the O2 box. Here, we used RNAi to knockdown Pbf expression and found that only 27-kDa gamma- and 22-kDa alpha-zein gene expression were affected, whereas the level of other zeins remained unchanged. Still, transgenic seeds had an opaque seed phenotype. Combination of PbfRNAi and o2 resulted in further reduction of alpha-zein expression. We also tested the interaction of promoters and constitutively expressed PBF and O2. Whereas transgenic promoters could be activated, endogenous promoters appeared to be not accessible to transcriptional activation, presumably due to differential chromatin states. Although analysis of the methylation of binding sites of PBF and O2 correlated with the expression of endogenous 22-kDa alpha-zein promoters, a different mechanism seems to apply to the 27-kDa gamma-zein promoter, which does not undergo methylation changes.
Zhang, W, Sangtong V, Peterson J, Scott MP, Messing J.  2013.  Divergent properties of prolamins in wheat and maize. Planta. 237:1465-73. AbstractWebsite
Cereal grains are an important nutritional source of amino acids for humans and livestock worldwide. Wheat, barley, and oats belong to a different subfamily of the grasses than rice and in addition to maize, millets, sugarcane, and sorghum. All their seeds, however, are largely devoid of free amino acids because they are stored during dormancy in specialized storage proteins. Prolamins, the major class of storage proteins in cereals with preponderance of proline and glutamine, are synthesized at the endoplasmic reticulum during seed development and deposited into subcellular structures of the immature endosperm, the protein bodies. Prolamins have diverged during the evolution of the grass family in their structure and their properties. Here, we used the expression of wheat glutenin-Dx5 in maize to examine its interaction with maize prolamins during endosperm development. Ectopic expression of Dx5 alters protein body morphology in a way that resembles non-vitreous kernel phenotypes, although Dx5 alone does not cause an opaque phenotype. However, if we lower the amount of gamma-zeins in Dx5 maize through RNAi, a non-vitreous phenotype emerges and the deformation on the surface of protein bodies is enhanced, indicating that Dx5 requires gamma-zeins for its proper subcellular organization in maize.
Wu, Y, Yuan L, Guo X, Holding DR, Messing J.  2013.  Mutation in the seed storage protein kafirin creates a high-value food trait in sorghum. Nat Commun. 4:2217. AbstractWebsite
Sustainable food production for the earth's fast-growing population is a major challenge for breeding new high-yielding crops, but enhancing the nutritional quality of staple crops can potentially offset limitations associated with yield increases. Sorghum has immense value as a staple food item for humans in Africa, but it is poorly digested. Although a mutant exhibiting high-protein digestibility and lysine content has market potential, the molecular nature of the mutation is previously unknown. Here, building on knowledge from maize mutants, we take a direct approach and find that the high-digestible sorghum phenotype is tightly linked to a single-point mutation, rendering the signal peptide of a seed storage protein kafirin resistant to processing, indirectly reducing lysine-poor kafirins and thereby increasing lysine-rich proteins in the seeds. These findings indicate that a molecular marker can be used to accelerate introduction of this high nutrition and digestibility trait into different sorghum varieties.
Lang, Z, Wills DM, Lemmon ZH, Shannon LM, Bukowski R, Wu Y, Messing J, Doebley JF.  2014.  Defining the Role of prolamin-box binding factor1 Gene During Maize Domestication. J Hered. AbstractWebsite
The prolamin-box binding factor1 (pbf1) gene encodes a transcription factor that controls the expression of seed storage protein (zein) genes in maize. Prior studies show that pbf1 underwent selection during maize domestication although how it affected trait change during domestication is unknown. To assay how pbf1 affects phenotypic differences between maize and teosinte, we compared nearly isogenic lines (NILs) that differ for a maize versus teosinte allele of pbf1. Kernel weight for the teosinte NIL (162mg) is slightly but significantly greater than that for the maize NIL (156mg). RNAseq data for developing kernels show that the teosinte allele of pbf1 is expressed at about twice the level of the maize allele. However, RNA and protein assays showed no difference in zein profile between the two NILs. The lower expression for the maize pbf1 allele suggests that selection may have favored this change; however, how reduced pbf1 expression alters phenotype remains unknown. One possibility is that pbf1 regulates genes other than zeins and thereby is a domestication trait. The observed drop in seed weight associated with the maize allele of pbf1 is counterintuitive but could represent a negative pleiotropic effect of selection on some other aspect of kernel composition.
Miclaus, M, Wu Y, Xu JH, Dooner HK, Messing J.  2011.  The maize high-lysine mutant opaque7 is defective in an acyl-CoA synthetase-like protein. Genetics. 189:1271-80. AbstractWebsite
Maize (Zea mays) has a large class of seed mutants with opaque or nonvitreous endosperms that could improve the nutritional quality of our food supply. The phenotype of some of them appears to be linked to the improper formation of protein bodies (PBs) where zein storage proteins are deposited. Although a number of genes affecting endosperm vitreousness have been isolated, it has been difficult to clone opaque7 (o7), mainly because of its low penetrance in many genetic backgrounds. The o7-reference (o7-ref) mutant arose spontaneously in a W22 inbred, but is poorly expressed in other lines. We report here the isolation of o7 with a combination of map-based cloning and transposon tagging. We first identified an o7 candidate gene by map-based cloning. The putative o7-ref allele has a 12-bp in-frame deletion of codons 350-353 in a 528-codon-long acyl-CoA synthetase-like gene (ACS). We then confirmed this candidate gene by generating another mutant allele from a transposon-tagging experiment using the Activator/Dissociation (Ac/Ds) system in a W22 background. The second allele, isolated from approximately 1 million gametes, presented a 2-kb Ds insertion that resembles the single Ds component of double-Ds, McClintock's original Dissociation element, at codon 496 of the ACS gene. PBs exhibited striking membrane invaginations in the o7-ref allele and a severe number reduction in the Ds-insertion mutant, respectively. We propose a model in which the ACS enzyme plays a key role in membrane biogenesis, by taking part in protein acylation, and that altered PBs render the seed nonvitreous.
Norrander, JM, Vieira J, Rubenstein I, Messing J.  1985.  Manipulation and expression of the maize zein storage proteins in Escherichia coli. Journal of biotechnology. 2:157-175.Website
Hu, NT, Peifer MA, Heidecker G, Messing J, Rubenstein I.  1982.  Primary structure of a genomic zein sequence of maize. The EMBO journal. 1:1337-42. AbstractWebsite
The nucleotide sequence of a genomic clone (termed Z4 ) of the zein multigene family was compared to the nucleotide sequence of related cDNA clones of zein mRNAs. A tandem duplication of a 96-bp sequence is found in the genomic clone that is not present in the related cDNA clones. When the duplication is disregarded, the nucleotide sequence homology between Z4 and its related cDNAs was approximately 97%. The nucleotide sequence is also compared to other isolated cDNAs. No introns in the coding region of the zein gene are detected. The first nucleotide of a putative TATA box, TATAAATA , was located 88 nucleotides upstream of the first nucleotide of the first ATG codon which initiated the open reading frame. The first nucleotide of a putative CCAAT box, CAAAAT , appeared 45 nucleotides upstream of the first nucleotide of the zein cDNA clones in the 3' non-coding region also appeared in the genomic sequence at the same locations. The amino acid composition of the polypeptide specified by the Z4 nucleotide sequence is similar to the known composition of zein proteins.