Plastid Genotyping Reveals Uniformity of cms-T Maize Cytoplasms.

Bosacchi, M, Gurdon C, Maliga P.  2015.  

Journal:

Plant Physiology

Abstract:

Cytoplasmic male sterile (CMS) lines in maize have been classified by their response to specific restorer genes into three categories: cms-C, cms-S, and cms-T. A mitochondrial genome representing each of the CMS cytotypes has been sequenced and male sterility in the cms-S and cms-T cytotypes is linked to chimeric mitochondrial genes. To identify markers for plastid genotyping, we sequenced the plastid genomes (ptDNA) of three fertile maize lines (B37, B73, A188) and the B37 cms-C, cms-S, and cms-T cytoplasmic substitution lines. We found that the plastid genomes of B37 and B73 lines are identical. Furthermore, the fertile and CMS plastid genomes are conserved, differing only by 0-3 single nucleotide polymorphisms (SNPs) in coding regions and 8-22 SNPs and 10-21 short insertions/deletions in noncoding regions. To gain insight into the origin and transmission of the cms-T trait, we identified three SNPs unique to the cms-T plastids, and tested the three diagnostic SNPs in 27 cms-T lines, representing the HA, I, Q, RS and T male sterile cytoplasms. We report that each of the tested 27 cms-T group accessions have the same three diagnostic plastid SNPs indicating a single origin and maternal co-transmission of the cms-T mitochondria and plastids to the seed progeny. Our data exclude exceptional pollen transmission of organelles or multiple horizontal gene transfer events as the source of the urf13-T gene in the cms-T cytoplasms. Plastid genotyping enables a reassessment of evolutionary relationships of cytoplasms in cultivated maize.

Citation:
Bosacchi, M, Gurdon C, Maliga P.  2015.  Plastid Genotyping Reveals Uniformity of cms-T Maize Cytoplasms.. Plant Physiology.