Publications

Filters: First Letter Of Last Name is S  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Sharwood, RE, von Caemmerer S, Maliga P, Whitney SM.  2008.  The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth. Plant Physiol.. 146:83-96. AbstractWebsite
Plastomic replacement of the tobacco (Nicotiana tabacum) Rubisco large subunit gene (rbcL) with that from sunflower (Helianthus annuus; rbcL(S)) produced tobacco(Rst) transformants that produced a hybrid Rubisco consisting of sunflower large and tobacco small subunits (L(s)S(t)). The tobacco(Rst) plants required CO(2) (0.5% v/v) supplementation to grow autotrophically from seed despite the substrate saturated carboxylation rate, K(m), for CO(2) and CO(2)/O(2) selectivity of the L(s)S(t) enzyme mirroring the kinetically equivalent tobacco and sunflower Rubiscos. Consequently, at the onset of exponential growth when the source strength and leaf L(s)S(t) content were sufficient, tobacco(Rst) plants grew to maturity without CO(2) supplementation. When grown under a high pCO(2), the tobacco(Rst) seedlings grew slower than tobacco and exhibited unique growth phenotypes: Juvenile plants formed clusters of 10 to 20 structurally simple oblanceolate leaves, developed multiple apical meristems, and the mature leaves displayed marginal curling and dimpling. Depending on developmental stage, the L(s)S(t) content in tobacco(Rst) leaves was 4- to 7-fold less than tobacco, and gas exchange coupled with chlorophyll fluorescence showed that at 2 mbar pCO(2) and growth illumination CO(2) assimilation in mature tobacco(Rst) leaves remained limited by Rubisco activity and its rate (approximately 11 micromol m(-2) s(-1)) was half that of tobacco controls. (35)S-methionine labeling showed the stability of assembled L(s)S(t) was similar to tobacco Rubisco and measurements of light transient CO(2) assimilation rates showed L(s)S(t) was adequately regulated by tobacco Rubisco activase. We conclude limitations to tobacco(Rst) growth primarily stem from reduced rbcL(S) mRNA levels and the translation and/or assembly of sunflower large with the tobacco small subunits that restricted L(s)S(t) synthesis.
Sinagawa-Garcia, SR, Tungsuchat-Huang T, Paredes-Lopez O, Maliga P.  2009.  Next generation synthetic vectors for transformation of the plastid genome of higher plants. Plant Mol. Biol.. 70:487-98. AbstractWebsite
Plastid transformation vectors are E. coli plasmids carrying a plastid marker gene for selection, adjacent cloning sites and flanking plastid DNA to target insertions in the plastid genome by homologous recombination. We report here on a family of next generation plastid vectors carrying synthetic DNA vector arms targeting insertions in the rbcL-accD intergenic region of the tobacco (Nicotiana tabacum) plastid genome. The pSS22 plasmid carries only synthetic vector arms from which the undesirable restriction sites have been removed by point mutations. The pSS24 vector carries a c-Myc tagged spectinomycin resistance (aadA) marker gene whereas in vector pSS30 aadA is flanked with loxP sequences for post-transformation marker excision. The synthetic vectors will enable direct manipulation of passenger genes in the transformation vector targeting insertions in the rbcL-accD intergenic region that contains many commonly used restriction sites.
Svab, Z, Maliga P.  2007.  Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc. Natl. Acad. Sci. U.S.A.. 104:7003-8. AbstractWebsite
Plastids in Nicotiana tabacum are normally transmitted to the progeny by the maternal parent only. However, low-frequency paternal plastid transmission has been reported in crosses involving parents with an alien cytoplasm. Our objective was to determine whether paternal plastids are transmitted in crosses between parents with the normal cytoplasm. The transplastomic father lines carried a spectinomycin resistance (aadA) transgene incorporated in the plastid genome. The mother lines in the crosses were either (i) alloplasmic, with the Nicotiana undulata cytoplasm that confers cytoplasmic male sterility (CMS92) or (ii) normal, with the fertile N. tabacum cytoplasm. Here we report that plastids from the transplastomic father were transmitted in both cases at low (10(-4)-10(-5)) frequencies; therefore, rare paternal pollen transmission is not simply due to breakdown of normal controls caused by the alien cytoplasm. Furthermore, we have found that the entire plastid genome was transmitted by pollen rather than small plastid genome (ptDNA) fragments. Interestingly, the plants, which inherited paternal plastids, also carried paternal mitochondrial DNA, indicating cotransmission of plastids and mitochondria in the same pollen. The detection of rare paternal plastid transmission described here was facilitated by direct selection for the transplastomic spectinomycin resistance marker in tissue culture; therefore, recovery of rare paternal plastids in the germline is less likely to occur under field conditions.