Publications

2016
Gurdon, C, Svab Z, Feng Y, Kumar D, Maliga P.  2016.  Cell-to-cell movement of mitochondria in plants. Proc Natl Acad Sci U S A. 113:3395-400. AbstractWebsite
We report cell-to-cell movement of mitochondria through a graft junction. Mitochondrial movement was discovered in an experiment designed to select for chloroplast transfer fromNicotiana sylvestrisintoNicotiana tabacumcells. The alloplasmicN. tabacumline we used carriesNicotiana undulatacytoplasmic genomes, and its flowers are male sterile due to the foreign mitochondrial genome. Thus, rare mitochondrial DNA transfer fromN. sylvestristoN. tabacumcould be recognized by restoration of fertile flower anatomy. Analyses of the mitochondrial genomes revealed extensive recombination, tentatively linking male sterility toorf293, a mitochondrial gene causing homeotic conversion of anthers into petals. Demonstrating cell-to-cell movement of mitochondria reconstructs the evolutionary process of horizontal mitochondrial DNA transfer and enables modification of the mitochondrial genome by DNA transmitted from a sexually incompatible species. Conversion of anthers into petals is a visual marker that can be useful for mitochondrial transformation.
2015
Lutz, KA, Martin C, Khairzada S, Maliga P.  2015.  Steroid-inducible BABY BOOM system for development of fertile Arabidopsis thaliana plants after prolonged tissue culture. Plant Cell Rep. 34:1849-56. AbstractWebsite
KEY MESSAGE: We describe a steroid-inducible BABY BOOM system that improves plant regeneration in Arabidopsis leaf cultures and yields fertile plants. Regeneration of Arabidopsis thaliana plants for extended periods of time in tissue culture may result in sterile plants. We report here a novel approach for A. thaliana regeneration using a regulated system to induce embryogenic cultures from leaf tissue. The system is based on BABY BOOM (BBM), a transcription factor that turns on genes involved in embryogenesis. We transformed the nucleus of A. thaliana plants with BBM:GR, a gene in which the BBM coding region is fused with the glucocorticoid receptor (GR) steroid-binding domain. In the absence of the synthetic steroid dexamethasone (DEX), the BBM:GR fusion protein is localized in the cytoplasm. Only when DEX is included in the culture medium does the BBM transcription factor enter the nucleus and turn on genes involved in embryogenesis. BBM:GR plant lines show prolific shoot regeneration from leaf pieces on media containing DEX. Removal of DEX from the culture media allowed for flowering and seed formation. Therefore, use of BBM:GR leaf tissue for regeneration of plants for extended periods of time in tissue culture will facilitate the recovery of fertile plants.
Bosacchi, M, Gurdon C, Maliga P.  2015.  Plastid Genotyping Reveals Uniformity of cms-T Maize Cytoplasms.. Plant Physiology. Abstract
Cytoplasmic male sterile (CMS) lines in maize have been classified by their response to specific restorer genes into three categories: cms-C, cms-S, and cms-T. A mitochondrial genome representing each of the CMS cytotypes has been sequenced and male sterility in the cms-S and cms-T cytotypes is linked to chimeric mitochondrial genes. To identify markers for plastid genotyping, we sequenced the plastid genomes (ptDNA) of three fertile maize lines (B37, B73, A188) and the B37 cms-C, cms-S, and cms-T cytoplasmic substitution lines. We found that the plastid genomes of B37 and B73 lines are identical. Furthermore, the fertile and CMS plastid genomes are conserved, differing only by 0-3 single nucleotide polymorphisms (SNPs) in coding regions and 8-22 SNPs and 10-21 short insertions/deletions in noncoding regions. To gain insight into the origin and transmission of the cms-T trait, we identified three SNPs unique to the cms-T plastids, and tested the three diagnostic SNPs in 27 cms-T lines, representing the HA, I, Q, RS and T male sterile cytoplasms. We report that each of the tested 27 cms-T group accessions have the same three diagnostic plastid SNPs indicating a single origin and maternal co-transmission of the cms-T mitochondria and plastids to the seed progeny. Our data exclude exceptional pollen transmission of organelles or multiple horizontal gene transfer events as the source of the urf13-T gene in the cms-T cytoplasms. Plastid genotyping enables a reassessment of evolutionary relationships of cytoplasms in cultivated maize.
Wang, W, Zhang W, Wu Y, Maliga P, Messing J.  2015.  RNA Editing in Chloroplasts of Spirodela polyrhiza, an Aquatic Monocotelydonous Species. PLoS One. 10:e0140285. AbstractWebsite
RNA editing is the post-transcriptional conversion from C to U before translation, providing a unique feature in the regulation of gene expression. Here, we used a robust and efficient method based on RNA-seq from non-ribosomal total RNA to simultaneously measure chloroplast-gene expression and RNA editing efficiency in the Greater Duckweed, Spirodela polyrhiza, a species that provides a new reference for the phylogenetic studies of monocotyledonous plants. We identified 66 editing sites at the genome-wide level, with an average editing efficiency of 76%. We found that the expression levels of chloroplast genes were relatively constant, but 11 RNA editing sites show significant changes in editing efficiency, when fronds turn into turions. Thus, RNA editing efficiency contributes more to the yield of translatable transcripts than steady state mRNA levels. Comparison of RNA editing sites in coconut, Spirodela, maize, and rice suggests that RNA editing originated from a common ancestor.
2014
Maliga, P.  2014.  Chloroplast Biotechnology: Methods and Protocols. Methods in Molecular Biology. 1132Website
Tungsuchat-Huang, T, Maliga P.  2014.  Plastid marker gene excision in greenhouse-grown tobacco by Agrobacterium-delivered Cre recombinase. Chloroplast Biotechnology. 1132:205-220. Abstract
Uniform transformation of the thousands of plastid genome (ptDNA) copies in a cell is driven by selection for plastid markers. When each of the plastid genome copies is uniformly altered, the marker gene is no longer needed. Plastid markers have been efficiently excised by site-specific recombinases expressed from nuclear genes either by transforming tissue culture cells or introducing the genes by pollination. Here we describe a protocol for the excision of plastid marker genes directly in tobacco (Nicotiana tabacum) plants by the Cre recombinase. Agrobacterium encoding the recombinase on its T-DNA is injected at an axillary bud site of a decapitated plant, forcing shoot regeneration at the injection site. The excised plastid marker, the bar au gene, confers a visual aurea leaf phenotype; thus marker excision via the flanking recombinase target sites is recognized by the restoration of normal green color of the leaves. The bar au marker-free plastids are transmitted through seed to the progeny. PCR and DNA gel blot (Southern) protocols to confirm transgene integration and plastid marker excision are also provided herein.
Maliga, P, Tungsuchat-Huang T.  2014.  Plastid transformation in Nicotiana tabacum and Nicotiana sylvestris by biolistic DNA delivery to leaves. Chloroplast Biotechnology: Methods and Protocols. 1132:147-163. Abstract
The protocol we report here is based on biolistic delivery of the transforming DNA to tobacco leaves, selection of transplastomic clones by spectinomycin resistance and regeneration of plants with uniformly transformed plastid genomes. Because the plastid genome of Nicotiana tabacum derives from Nicotiana sylvestris, and the two genomes are highly conserved, vectors developed for N. tabacum can be used in N. sylvestris. Also, the tissue culture responses of N. tabacum cv. Petit Havana and N. sylvestris accession TW137 are similar, allowing plastid engineering protocols developed for N. tabacum to be directly applied to N. sylvestris. However, the tissue culture protocol is applicable only in a subset of N. tabacum cultivars. Here we highlight differences between the protocols for the two species. We describe updated vectors targeting insertions in the unique and repeated regions of the plastid genome as well as systems for marker excision. The simpler genetics of the diploid N. sylvestris, as opposed to the allotetraploid N. tabacum, make it an attractive model for plastid transformation.
Gurdon, C, Maliga P.  2014.  Two distinct plastid genome configurations and unprecedented intraspecies length variation in the accD coding region in Medicago truncatula. DNA Reserach. 21:inpress. AbstractWebsite
We fully sequenced four and partially sequenced six additional plastid genomes of the model legume Medicago truncatula. Three accessions, Jemalong 2HA, Borung and Paraggio, belong to ssp. truncatula, and R108 to ssp. tricycla. We report here that the R108 ptDNA has a ∼45-kb inversion compared with the ptDNA in ssp. truncatula, mediated by a short, imperfect repeat. DNA gel blot analyses of seven additional ssp. tricycla accessions detected only one of the two alternative genome arrangements, represented by three and four accessions each. Furthermore, we found a variable number of repeats in the essential accD and ycf1 coding regions. The repeats within accD are recombinationally active, yielding variable-length insertions and deletions in the central part of the coding region. The length of ACCD was distinct in each of the 10 sequenced ecotypes, ranging between 650 and 796 amino acids. The repeats in the ycf1 coding region are also recombinationally active, yielding short indels in 10 regions of the reading frames. Thus, the plastid genome variability we report here could be linked to repeat-mediated genome rearrangements. However, the rate of recombination was sufficiently low, so that no heterogeneity of ptDNA could be observed in populations maintained by single-seed descent.
2012
Thyssen, G, Svab Z, Maliga P.  2012.  Exceptional inheritance of plastids via pollen in Nicotiana sylvestris with no detectable paternal mitochondrial DNA in the progeny. Plant J.. 72:84-8. AbstractWebsite
Plastids and mitochondria, the DNA-containing cytoplasmic organelles, are maternally inherited in the majority of angiosperm species. Even in plants with strict maternal inheritance, exceptional paternal transmission of plastids has been observed. Our objective was to detect rare leakage of plastids via pollen in Nicotiana sylvestris and to determine if pollen transmission of plastids results in co-transmission of paternal mitochondria. As father plants, we used N. sylvestris plants with transgenic, selectable plastids and wild-type mitochondria. As mother plants, we used N. sylvestris plants with Nicotiana undulata cytoplasm, including the CMS-92 mitochondria that cause cytoplasmic male sterility (CMS) by homeotic transformation of the stamens. We report here exceptional paternal plastid DNA in approximately 0.002% of N. sylvestris seedlings. However, we did not detect paternal mitochondrial DNA in any of the six plastid-transmission lines, suggesting independent transmission of the cytoplasmic organelles via pollen. When we used fertile N. sylvestris as mothers, we obtained eight fertile plastid transmission lines, which did not transmit their plastids via pollen at higher frequencies than their fathers. We discuss the implications for transgene containment and plant evolutionary histories inferred from cytoplasmic phylogenies.
Dudas, B, Jenes B, Kiss GB, Maliga P.  2012.  Spectinomycin resistance mutations in the rrn16 gene are new plastid markers in Medicago sativa. Theor. Appl. Genet. 125:1517-23. AbstractWebsite
We report here the isolation of spectinomycin-resistant mutants in cultured cells of Medicago sativa line RegenSY-T2. Spectinomycin induces bleaching of cultured alfalfa cells due to inhibition of protein synthesis on the prokaryotic type 70S plastid ribosomes. Spontaneous mutants resistant to spectinomycin bleaching were identified by their ability to form green shoots on plant regeneration medium containing selective spectinomycin concentrations in the range of 25-50 mg/l. Sequencing of the plastid rrn16 gene revealed that spectinomycin resistance is due to mutations in a conserved stem structure of the 16S rRNA. Resistant plants transferred to the greenhouse developed normally and produced spectinomycin-resistant seed progeny. In light of their absence in soybean, a related leguminous plant, the isolation of spectinomycin-resistant mutants in M. sativa was unexpected. The new mutations are useful for the study of plastid inheritance, as demonstrated by detection of predominantly paternal plastid inheritance in the RegenSY-T2 x Szapko57 cross, and can be used as selective markers in plastid transformation vectors to obtain cisgenic plants.
Tungsuchat-Huang, T, Maliga P.  2012.  Visual marker and Agrobacterium-delivered recombinase enable the manipulation of the plastid genome in greenhouse-grown tobacco plants. Plant J.. 70:717-25. AbstractWebsite
Successful manipulation of the plastid genome (ptDNA) has been carried out so far only in tissue-culture cells, a limitation that prevents plastid transformation being applied in major agronomic crops. Our objective is to develop a tissue-culture independent protocol that enables manipulation of plastid genomes directly in plants to yield genetically stable seed progeny. We report that in planta excision of a plastid aurea bar gene (bar(au) ) is detectable in greenhouse-grown plants by restoration of the green pigmentation in tobacco leaves. The P1 phage Cre or PhiC31 phage Int site-specific recombinase was delivered on the Agrobacterium T-DNA injected at the axillary bud site, resulting in the excision of the target-site flanked marker gene. Differentiation of new apical meristems was forced by decapitating the plants above the injection site. The new shoot apex that differentiated at the injection site contained bar(au)-free plastids in 30-40% of the injected plants, of which 7% transmitted the bar(au)-free plastids to the seed progeny. The success of obtaining seed with bar(au)-free plastids depended on repeatedly forcing shoot development from axillary buds, a process that was guided by the size and position of green sectors in the leaves. The success of in planta plastid marker excision proved that manipulation of the plastid genomes is feasible within an intact plant. Extension of the protocol to in planta plastid transformation depends on the development of new protocols for the delivery of transforming DNA encoding visual markers.
Thyssen, G, Svab Z, Maliga P.  2012.  Cell-to-cell movement of plastids in plants. Proc. Natl. Acad. Sci. U.S.A.. 109:2439-43. AbstractWebsite
Our objective was to test whether or not plastids and mitochondria, the two DNA-containing organelles, move between cells in plants. As our experimental approach, we grafted two different species of tobacco, Nicotiana tabacum and Nicotiana sylvestris. Grafting triggers formation of new cell-to-cell contacts, creating an opportunity to detect cell-to-cell organelle movement between the genetically distinct plants. We initiated tissue culture from sliced graft junctions and selected for clonal lines in which gentamycin resistance encoded in the N. tabacum nucleus was combined with spectinomycin resistance encoded in N. sylvestris plastids. Here, we present evidence for cell-to-cell movement of the entire 161-kb plastid genome in these plants, most likely in intact plastids. We also found that the related mitochondria were absent, suggesting independent movement of the two DNA-containing organelles. Acquisition of plastids from neighboring cells provides a mechanism by which cells may be repopulated with functioning organelles. Our finding supports the universality of intercellular organelle trafficking and may enable development of future biotechnological applications.
Maliga, P.  2012.  Plastid transformation in flowering plants. Genomics of Chloroplasts and Mitochondria. 35:393-414. Abstract
The plastid genome of higher plants is relatively small, 120–230-kb in size, and present in up to 10,000 copies per cell. Standard protocols for the introduction of transforming DNA employ biolistic DNA delivery or polyethylene glycol treatment. Genetically stable, transgenic plants are obtained by modification of the plastid genome by homologous recombination, followed by selection for the transformed genome copy by the expression of marker genes that protect the cells from selective agents. Commonly used selective agents are antibiotics, including spectinomycin, streptomycin, kanamycin and chloramphenicol. Selection for resistance to amino acid analogues has also been successful. The types of plastid genome manipulations include gene deletion, gene insertion, and gene replacement, facilitated by specially designed transformation vectors. Methods are also available for post-transformation removal of marker genes. The model species for plastid genetic manipulation is Nicotiana tabacum, in which most protocols have been tested. Plastid transformation is also available in several solanaceous crops (tomato, potato, eggplant) and ornamental species (petunia, Nicotianasylvestris). Significant progress has been made with Brasssicaceae including cabbage, oilseed rape and Arabidopsis. Recent additions to the crops in which plastid transformation is reproducibly obtained are lettuce, soybean and sugar beet. The monocots are a taxonomic group recalcitrant to plastid transformation; initial inroads have been made only in rice.
2011
Tungsuchat-Huang, T, Slivinski KM, Sinagawa-Garcia SR, Maliga P.  2011.  Visual spectinomycin resistance (aadA(au)) gene for facile identification of transplastomic sectors in tobacco leaves. Plant Mol. Biol.. 76:453-61. AbstractWebsite
Identification of a genetically stable Nicotiana tabacum (tobacco) plant with a uniform population of transformed plastid genomes (ptDNA) takes two cycles of plant regeneration from chimeric leaves and analysis of multiple shoots by Southern probing in each cycle. Visual detection of transgenic sectors facilitates identification of transformed shoots in the greenhouse, complementing repeated cycles of blind purification in culture. In addition, it provides a tool to monitor the maintenance of transplastomic state. Our current visual marker system requires two genes: the aurea bar (bar(au)) gene that confers a golden leaf phenotype and a spectinomycin resistance (aadA) gene that is necessary for the introduction of the bar(au) gene in the plastid genome. We developed a novel aadA gene that fulfills both functions: it is a conventional selectable aadA gene in culture, and allows detection of transplastomic sectors in the greenhouse by leaf color. Common causes of pigment deficiency in leaves are mutations in photosynthetic genes, which affect chlorophyll accumulation. We use a different approach to achieve pigment deficiency: post-transcriptional interference with the expression of the clpP1 plastid gene by aurea aadA(au) transgene. This interference produces plants with reduced growth and a distinct color, but maintains a wild-type gene set and the capacity for photosynthesis. Importantly, when the aurea gene is removed, green pigmentation and normal growth rate are restored. Because the aurea plants are viable, the new aadA(au) genes are useful to query rare events in large populations and for in planta manipulation of the plastid genome.
Maliga, P, Bock R.  2011.  Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol.. 155:1501-10.Website
Maliga, P, Svab Z.  2011.  Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics. Methods in Molecular Biology. 701:37-50. AbstractWebsite
The plastids of higher plants have their own approximately 120-160-kb genome that is present in 1,000-10,000 copies per cell. Engineering of the plastid genome (ptDNA) is based on homologous recombination between the plastid genome and cloned ptDNA sequences in the vector. A uniform population of engineered ptDNA is obtained by selection for marker genes encoded in the vectors. Manipulations of ptDNA include (1) insertion of transgenes in intergenic regions; (2) posttransformation excision of marker genes to obtain marker-free plants; (3) gene knockouts and gene knockdowns, and (4) cotransformation with multiple plasmids to introduce nonselected genes without physical linkage to marker genes. Most experiments on plastome engineering have been carried out in the allotetraploid Nicotiana tabacum. We report here for the first time plastid transformation in Nicotiana sylvestris, a diploid ornamental species. We demonstrate that the protocols and vectors developed for plastid transformation in N. tabacum are directly applicable to N. sylvestris with the advantage that the N. sylvestris transplastomic lines are suitable for mutant screens.
Lutz, KA, Azhagiri A, Maliga P.  2011.  Transplastomics in Arabidopsis: progress toward developing an efficient method. Methods in Molecular Biology. 774:133-47. AbstractWebsite
Protocols developed for plastome engineering in Nicotiana tabacum rely on biolistic delivery of the transforming DNA to chloroplasts in intact leaf tissue; integration of the foreign DNA into the plastid genome by homologous recombination via flanking plastid DNA (ptDNA) targeting regions; and gradual dilution of non-transformed ptDNA during cultivation in vitro. Plastid transformation in Arabidopsis was obtained by combining the tobacco leaf transformation protocol with Arabidopsis-specific tissue culture and plant regeneration protocols. Because the leaf cells in Arabidopsis are polyploid, this protocol yielded sterile plants. Meristematic cells in a shoot apex or cells of a developing embryo are diploid. Therefore, we developed a regulated embryogenic root culture system that will generate diploid tissue for plastid transformation. This embryogenic culture system is created by steroid-inducible expression of the BABY BOOM transcription factor. Plastid transformation in Arabidopsis will enable the probing of plastid gene function, and the characterization of posttranscriptional mechanisms of gene regulation and the regulatory interactions of plastid and nuclear genes.
2010
Tungsuchat-Huang, T, Sinagawa-Garcia SR, Paredes-Lopez O, Maliga P.  2010.  Study of plastid genome stability in tobacco reveals that the loss of marker genes is more likely by gene conversion than by recombination between 34-bp loxP repeats. Plant Physiol.. 153:252-9. AbstractWebsite
In transformed tobacco (Nicotiana tabacum) plastids, we flank the marker genes with recombinase target sites to facilitate their posttransformation excision. The P1 phage loxP sites are identical 34-bp direct repeats, whereas the phiC31 phage attB/attP sites are 54- and 215-bp sequences with partial homology within the 54-bp region. Deletions in the plastid genome are known to occur by recombination between directly repeated sequences. Our objective was to test whether or not the marker genes may be lost by homologous recombination via the directly repeated target sites in the absence of site-specific recombinases. The sequence between the target sites was the bar(au) gene that causes a golden-yellow (aurea) leaf color, so that the loss of the bar(au) gene can be readily detected by the appearance of green sectors. We report here that transplastomes carrying the bar(au) gene marker between recombinase target sites are relatively stable because no green sectors were detected in approximately 36,000 seedlings (Nt-pSS33 lines) carrying attB/attP-flanked bar(au) gene and in approximately 38,000 seedlings (Nt-pSS42 lines) carrying loxP-flanked bar(au) gene. Exceptions were six uniformly green plants in the Nt-pSS42-7A progeny. Sequencing the region of plastid DNA that may derive from the vector indicated that the bar(au) gene in the six green plants was lost by gene conversion using wild-type plastid DNA as template rather than by deletion via directly repeated loxP sites. Thus, the recombinase target sites incorporated in the plastid genome for marker gene excisions are too short to mediate the loss of marker genes by homologous recombination at a measurable frequency.
Cardi, T, Lenzi P, Maliga P.  2010.  Chloroplasts as expression platforms for plant-produced vaccines. Expert Rev. Vaccines. 9:893-911. AbstractWebsite
Production of recombinant subunit vaccines from genes incorporated in the plastid genome is advantageous because of the attainable expression level due to high transgene copy number and the absence of gene silencing; biocontainment as a consequence of maternal inheritance of plastids and no transgene presence in the pollen; and expression of multiple transgenes in prokaryotic-like operons. We discuss the core technology of plastid transformation in Chlamydomonas reinhardtii, a unicellular alga, and Nicotiana tabacum (tobacco), a flowering plant species, and demonstrate the utility of the technology for the production of recombinant vaccine antigens.
Krichevsky, A, Meyers B, Vainstein A, Maliga P, Citovsky V.  2010.  Autoluminescent plants. PloS one. 5:e15461. AbstractWebsite
Prospects of obtaining plants glowing in the dark have captivated the imagination of scientists and layman alike. While light emission has been developed into a useful marker of gene expression, bioluminescence in plants remained dependent on externally supplied substrate. Evolutionary conservation of the prokaryotic gene expression machinery enabled expression of the six genes of the lux operon in chloroplasts yielding plants that are capable of autonomous light emission. This work demonstrates that complex metabolic pathways of prokaryotes can be reconstructed and function in plant chloroplasts and that transplastomic plants can emit light that is visible by naked eye.
2009
Sinagawa-Garcia, SR, Tungsuchat-Huang T, Paredes-Lopez O, Maliga P.  2009.  Next generation synthetic vectors for transformation of the plastid genome of higher plants. Plant Mol. Biol.. 70:487-98. AbstractWebsite
Plastid transformation vectors are E. coli plasmids carrying a plastid marker gene for selection, adjacent cloning sites and flanking plastid DNA to target insertions in the plastid genome by homologous recombination. We report here on a family of next generation plastid vectors carrying synthetic DNA vector arms targeting insertions in the rbcL-accD intergenic region of the tobacco (Nicotiana tabacum) plastid genome. The pSS22 plasmid carries only synthetic vector arms from which the undesirable restriction sites have been removed by point mutations. The pSS24 vector carries a c-Myc tagged spectinomycin resistance (aadA) marker gene whereas in vector pSS30 aadA is flanked with loxP sequences for post-transformation marker excision. The synthetic vectors will enable direct manipulation of passenger genes in the transformation vector targeting insertions in the rbcL-accD intergenic region that contains many commonly used restriction sites.
2008
Sharwood, RE, von Caemmerer S, Maliga P, Whitney SM.  2008.  The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth. Plant Physiol.. 146:83-96. AbstractWebsite
Plastomic replacement of the tobacco (Nicotiana tabacum) Rubisco large subunit gene (rbcL) with that from sunflower (Helianthus annuus; rbcL(S)) produced tobacco(Rst) transformants that produced a hybrid Rubisco consisting of sunflower large and tobacco small subunits (L(s)S(t)). The tobacco(Rst) plants required CO(2) (0.5% v/v) supplementation to grow autotrophically from seed despite the substrate saturated carboxylation rate, K(m), for CO(2) and CO(2)/O(2) selectivity of the L(s)S(t) enzyme mirroring the kinetically equivalent tobacco and sunflower Rubiscos. Consequently, at the onset of exponential growth when the source strength and leaf L(s)S(t) content were sufficient, tobacco(Rst) plants grew to maturity without CO(2) supplementation. When grown under a high pCO(2), the tobacco(Rst) seedlings grew slower than tobacco and exhibited unique growth phenotypes: Juvenile plants formed clusters of 10 to 20 structurally simple oblanceolate leaves, developed multiple apical meristems, and the mature leaves displayed marginal curling and dimpling. Depending on developmental stage, the L(s)S(t) content in tobacco(Rst) leaves was 4- to 7-fold less than tobacco, and gas exchange coupled with chlorophyll fluorescence showed that at 2 mbar pCO(2) and growth illumination CO(2) assimilation in mature tobacco(Rst) leaves remained limited by Rubisco activity and its rate (approximately 11 micromol m(-2) s(-1)) was half that of tobacco controls. (35)S-methionine labeling showed the stability of assembled L(s)S(t) was similar to tobacco Rubisco and measurements of light transient CO(2) assimilation rates showed L(s)S(t) was adequately regulated by tobacco Rubisco activase. We conclude limitations to tobacco(Rst) growth primarily stem from reduced rbcL(S) mRNA levels and the translation and/or assembly of sunflower large with the tobacco small subunits that restricted L(s)S(t) synthesis.
Lutz, KA, Maliga P.  2008.  Plastid genomes in a regenerating tobacco shoot derive from a small number of copies selected through a stochastic process. Plant J.. 56:975-83. AbstractWebsite
The plastid genome (ptDNA) of higher plants is highly polyploid, and the 1000-10 000 copies are compartmentalized with up to approximately 100 plastids per cell. The problem we address here is whether or not a newly arising genome can be established in a developing tobacco shoot, and be transmitted to the seed progeny. We tested this by generating two unequal ptDNA populations in a cultured tobacco cell. The parental tobacco plants in this study have an aurea (yellowish-golden) leaf color caused by the presence of a bar(au) gene in the ptDNA. In addition, the ptDNA carries an aadA gene flanked with the phiC31 phage site-specific recombinase (Int) attP/attB target sites. The genetically distinct ptDNA copies were obtained by Int, which either excised only the aadA marker gene (i.e. did not affect the aurea phenotype) or triggered the deletion of both the aadA and bar(au) transgenes, and thereby restored the green color. The ptDNA determining green plastids represented only a small fraction of the population and was not seen in a transient excision assay, and yet three out of the 53 regenerated shoots carried green plastids in all developmental layers. The remaining 49 Int-expressing plants had either exclusively aurea (24) or variegated (25) leaves with aurea and green sectors. The formation of homoplastomic green shoots with the minor green ptDNA in all developmental layers suggests that the ptDNA population in a regenerating shoot apical meristem derives from a small number of copies selected through a stochastic process.
Lenzi, P, Scotti N, Alagna F, Tornesello ML, Pompa A, Vitale A, De Stradis A, Monti L, Grillo S, Buonaguro FM et al..  2008.  Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Research. 17:1091-102. AbstractWebsite
Human Papillomavirus (HPV) is the causal agent of cervical cancer, one of the most common causes of death for women. The major capsid L1 protein self-assembles in Virus Like Particles (VLPs), which are highly immunogenic and suitable for vaccine production. In this study, a plastid transformation approach was assessed in order to produce a plant-based HPV-16 L1 vaccine. Transplastomic plants were obtained after transformation with vectors carrying a chimeric gene encoding the L1 protein either as the native viral (L1(v) gene) or a synthetic sequence optimized for expression in plant plastids (L1(pt) gene) under control of plastid expression signals. The L1 mRNA was detected in plastids and the L1 antigen accumulated up to 1.5% total leaf proteins only when vectors included the 5'-UTR and a short N-terminal coding segment (Downstream Box) of a plastid gene. The half-life of the engineered L1 protein, determined by pulse-chase experiments, is at least 8 h. Formation of immunogenic VLPs in chloroplasts was confirmed by capture ELISA assay using antibodies recognizing conformational epitopes and by electron microscopy.
2007
Kittiwongwattana, C, Lutz K, Clark M, Maliga P.  2007.  Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol. Biol.. 64:137-43. AbstractWebsite
Marker genes are essential for selective amplification of rare transformed plastid genome copies to obtain genetically stable transplastomic plants. However, the marker gene becomes dispensable when homoplastomic plants are obtained. Here we report excision of plastid marker genes by the phiC31 phage site-specific integrase (Int) that mediates recombination between bacterial (attB) and phage (attP) attachment sites. We tested marker gene excision in a two-step process. First we transformed the tobacco plastid genome with the pCK2 vector in which the spectinomycin resistance (aadA) marker gene is flanked with suitably oriented attB and attP sites. The transformed plastid genomes were stable in the absence of Int. We then transformed the nucleus with a gene encoding a plastid-targeted Int that led to efficient marker gene excision. The aadA marker free Nt-pCK2-Int plants were resistant to phosphinothricin herbicides since the pCK2 plastid vector also carried a bar herbicide resistance gene that, due to the choice of its promoter, causes a yellowish-golden (aurea) phenotype. Int-mediated marker excision reported here is an alternative to the currently used CRE/loxP plastid marker excision system and expands the repertoire of the tools available for the manipulation of the plastid genome.