Publications

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Ambegaonkar, AA, Pan G, Mani M, Feng Y, Irvine KD.  2012.  Propagation of dachsous-fat planar cell polarity.. Current Biology. 22:1302-1308. AbstractWebsite
The Fat pathway controls both planar cell polarity (PCP) and organ growth [1, 2]. Fat signaling is regulated by the graded expression of the Fat ligand Dachsous (Ds) and the cadherin-domain kinase Four-jointed (Fj). The vectors of these gradients influence PCP [1], whereas their slope can influence growth [3, 4]. The Fj and Ds gradients direct the polarized membrane localization of the myosin Dachs, which is a crucial downstream component of Fat signaling [5-7]. Here we show that repolarization of Dachs by differential expression of Fj or Ds can propagate through the wing disc, which indicates that Fj and Ds gradients can be measured over long range. Through characterization of tagged genomic constructs, we show that Ds and Fat are themselves partially polarized along the endogenous Fj and Ds gradients, providing a mechanism for propagation of PCP within the Fat pathway. We also identify a biochemical mechanism that might contribute to this polarization by showing that Ds is subject to endoproteolytic cleavage and that the relative levels of Ds isoforms are modulated by Fat.
Ambegaonkar, AA, Irvine KD.  2015.  Coordination of planar cell polarity pathways through Spiny legs. eLife. 4:pii:e09946.
Anderson, KV, Irvine KD.  2009.  Developmental biology moves forward in the 21st century. Current opinion in genetics & development. 19:299-301.Website
B
Burke, JM, Irvine KD, Kaneko KJ, Kerker BJ, Oettgen AB, Tierney WM, Williamson CL, Zaug AJ, Cech TR.  1986.  Role of conserved sequence elements 9L and 2 in self-splicing of the Tetrahymena ribosomal RNA precursor. Cell. 45:167-76. AbstractWebsite
Oligonucleotide-directed mutagenesis has been used to alter highly conserved sequences within the intervening sequence (IVS) of the Tetrahymena large ribosomal RNA precursor. Mutations within either sequence element 9L or element 2 eliminate splicing activity under standard in vitro splicing conditions. A double mutant with compensatory base changes in elements 9L and 2 has accurate splicing activity restored. Thus, the targeted nucleotides of elements 9L and 2 base-pair with one another in the IVS RNA, and pairing is important for self-splicing. Mutant splicing activities are restored by increased magnesium ion concentrations, supporting the conclusion that the role of the targeted bases in splicing is primarily structural. Based on the temperature dependence, we propose that a conformational switch involving pairing and unpairing of elements 9L and 2 is required for splicing.
C
Cho, E, Feng Y, Rauskolb C, Maitra S, Fehon RG, Irvine KD.  2006.  Delineation of a Fat tumor suppressor pathway. Nature Genetics. 38:1142-50. AbstractWebsite
Recent studies in Drosophila melanogaster of the protocadherins Dachsous and Fat suggest that they act as ligand and receptor, respectively, for an intercellular signaling pathway that influences tissue polarity, growth and gene expression, but the basis for signaling downstream of Fat has remained unclear. Here, we characterize functional relationships among D. melanogaster tumor suppressors and identify the kinases Discs overgrown and Warts as components of a Fat signaling pathway. fat, discs overgrown and warts regulate a common set of downstream genes in multiple tissues. Genetic experiments position the action of discs overgrown upstream of the Fat pathway component dachs, whereas warts acts downstream of dachs. Warts protein coprecipitates with Dachs, and Warts protein levels are influenced by fat, dachs and discs overgrown in vivo, consistent with its placement as a downstream component of the pathway. The tumor suppressors Merlin, expanded, hippo, salvador and mob as tumor suppressor also share multiple Fat pathway phenotypes but regulate Warts activity independently. Our results functionally link what had been four disparate groups of D. melanogaster tumor suppressors, establish a basic framework for Fat signaling from receptor to transcription factor and implicate Warts as an integrator of multiple growth control signals.
Cho, E, Irvine KD.  2004.  Action of fat, four-jointed, dachsous and dachs in distal-to-proximal wing signaling. Development. 131:4489-500. AbstractWebsite
In the Drosophila wing, distal cells signal to proximal cells to induce the expression of Wingless, but the basis for this distal-to-proximal signaling is unknown. Here, we show that three genes that act together during the establishment of tissue polarity, fat, four-jointed and dachsous, also influence the expression of Wingless in the proximal wing. fat is required cell autonomously by proximal wing cells to repress Wingless expression, and misexpression of Wingless contributes to proximal wing overgrowth in fat mutant discs. Four-jointed and Dachsous can influence Wingless expression and Fat localization non-autonomously, consistent with the suggestion that they influence signaling to Fat-expressing cells. We also identify dachs as a gene that is genetically required downstream of fat, both for its effects on imaginal disc growth and for the expression of Wingless in the proximal wing. Our observations provide important support for the emerging view that Four-jointed, Dachsous and Fat function in an intercellular signaling pathway, identify a normal role for these proteins in signaling interactions that regulate growth and patterning of the proximal wing, and identify Dachs as a candidate downstream effector of a Fat signaling pathway.
Codelia, VA, Irvine KD.  2012.  Hippo Signaling Goes Long Range. Cell. 150:669-670.Website
Codelia, V, Sun G, Irvine KD.  2014.  Regulation of YAP by Mechanical Strain through Jnk and Hippo Signaling. Current Biology. 24:2012-2017.Website
Correia, T, Papayannopoulos V, Panin V, Woronoff P, Jiang J, Vogt TF, Irvine KD.  2003.  Molecular genetic analysis of the glycosyltransferase Fringe in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 100:6404-9. AbstractWebsite
Fringe proteins are beta1,3-N-acetylglucosaminyltransferases that modulate signaling through Notch receptors by modifying O-linked fucose on epidermal growth factor domains. Fringe is highly conserved, and comparison among 18 different Fringe proteins from 11 different species identifies a core set of 84 amino acids that are identical among all Fringes. Fringe is only distantly related to other glycosyltransferases, but analysis of the predicted Drosophila proteome identifies a set of four sequence motifs shared among Fringe and other putative beta1,3-glycosyltransferases. To gain functional insight into these conserved sequences, we genetically and molecularly characterized 14 point mutations in Drosophila fringe. Most nonsense mutations act as recessive antimorphs, raising the possibility that Fringe may function as a dimer. Missense mutations identify two distinct motifs that are conserved among beta1,3-glycosyltransferases, and that can be modeled onto key motifs in the crystallographic structures of bovine beta1,4-galactosyltransferase 1 and human glucuronyltransferase I. Other missense mutations map to amino acids that are conserved among Fringe proteins, but not among other glycosyltransferases, and thus may identify structural motifs that are required for unique aspects of Fringe activity.
D
Durst, R, Peal DS, deVlaming A, Leyne M, Talkowski M, Perrocheau M, Simpson C, Jett C, Stone MR, Charles F et al..  2015.  Mutations in DCHS1 Cause Mitral Valve Prolapse. Nature. :inpress.
F
Feng, Y, Irvine KD.  2009.  Processing and phosphorylation of the Fat receptor. Proceedings of the National Academy of Sciences of the United States of America. AbstractWebsite
The Drosophila tumor suppressors fat and discs overgrown (dco) function within an intercellular signaling pathway that controls growth and polarity. fat encodes a transmembrane receptor, but post-translational regulation of Fat has not been described. We show here that Fat is subject to a constitutive proteolytic processing, such that most or all cell surface Fat comprises a heterodimer of stably associated N- and C-terminal fragments. The cytoplasmic domain of Fat is phosphorylated, and this phosphorylation is promoted by the Fat ligand Dachsous. dco encodes a kinase that influences Fat signaling, and Dco is able to promote the phosphorylation of the Fat intracellular domain in cultured cells and in vivo. Evaluation of dco mutants indicates that they affect Fat's influence on growth and gene expression but not its influence on planar cell polarity. Our observations identify processing and phosphorylation as post-translational modifications of Fat, correlate the phosphorylation of Fat with its activation by Dachsous in the Fat-Warts pathway, and enhance our understanding of the requirement for Dco in Fat signaling.
Feng, Y, Irvine KD.  2007.  Fat and expanded act in parallel to regulate growth through warts. Proceedings of the National Academy of Sciences of the United States of America. 104:20362-7. AbstractWebsite
The conserved Drosophila tumor suppressors Fat and Expanded have both recently been implicated in regulating the activity of the Warts tumor suppressor. However, there has been disagreement as to the nature of the links among Fat, Expanded, and Warts and the significance of these links to growth control. We report here that mutations in either expanded or fat can be rescued to viability simply by overexpressing Warts, indicating that their essential function is their influence on Warts rather than reported effects on endocytosis or other pathways. These rescue experiments also separate the transcriptional from the planar cell polarity branches of Fat signaling and reveal that Expanded does not directly affect polarity. We also investigate the relationship between expanded and fat and show, contrary to prior reports, that they have additive effects on imaginal disk growth and development. Although mutation of fat can cause partial loss of Expanded protein from the membrane, mutation of fat promotes growth even when Expanded is overexpressed and accumulates at its normal subapical location. These observations argue against recent proposals that Fat acts simply as a receptor for the Hippo signaling pathway and instead support the proposal that Fat and Expanded can act in parallel to regulate Warts through distinct mechanisms.
G
Grammont, M, Irvine KD.  2002.  Organizer activity of the polar cells during Drosophila oogenesis. Development. 129:5131-40. AbstractWebsite
Patterning of the Drosophila egg requires the establishment of several distinct types of somatic follicle cells, as well as interactions between these follicle cells and the oocyte. The polar cells occupy the termini of the follicle and are specified by the activation of Notch. We have investigated their role in follicle patterning by creating clones of cells mutant for the Notch modulator fringe. This genetic ablation of polar cells results in cell fate defects within surrounding follicle cells. At the anterior, the border cells, the immediately adjacent follicle cell fate, are absent, as are the more distant stretched and centripetal follicle cells. Conversely, increasing the number of polar cells by expressing an activated form of the Notch receptor increases the number of border cells. At the posterior, elimination of polar cells results in abnormal oocyte localization. Moreover, when polar cells are mislocalized laterally, the surrounding follicle cells adopt a posterior fate, the oocyte is located adjacent to them, and the anteroposterior axis of the oocyte is re-oriented with respect to the ectopic polar cells. Our observations demonstrate that the polar cells act as an organizer that patterns surrounding follicle cells and establishes the anteroposterior axis of the oocyte. The origin of asymmetry during Drosophila development can thus be traced back to the specification of the polar cells during early oogenesis.
Grammont, M, Irvine KD.  2001.  fringe and Notch specify polar cell fate during Drosophila oogenesis. Development (Cambridge, England). 128:2243-53. AbstractWebsite
fringe encodes a glycosyltransferase that modulates the ability of the Notch receptor to be activated by its ligands. We describe studies of fringe function during early stages of Drosophila oogenesis. Animals mutant for hypomorphic alleles of fringe contain follicles with an incorrect number of germline cells, which are separated by abnormally long and disorganized stalks. Analysis of clones of somatic cells mutant for a null allele of fringe localizes the requirement for fringe in follicle formation to the polar cells, and demonstrates that fringe is required for polar cell fate. Clones of cells mutant for Notch also lack polar cells and the requirement for Notch in follicle formation appears to map to the polar cells. Ectopic expression of fringe or of an activated form of Notch can generate an extra polar cell. Our results indicate that fringe plays a key role in positioning Notch activation during early oogenesis, and establish a function for the polar cells in separating germline cysts into individual follicles.
H
Haines, N, Irvine KD.  2005.  Functional analysis of Drosophila beta1,4-N-acetlygalactosaminyltransferases. Glycobiology. 15:335-46. AbstractWebsite
Members of the mammalian beta1,4-galactosyltransferase family are among the best studied glycosyltransferases, but the requirements for all members of this family within an animal have not previously been determined. Here, we describe analysis of two Drosophila genes, beta4GalNAcTA (CG8536) and beta4GalNAcTB (CG14517), that are homologous to mammalian beta1,4-galactosyltransferases. Like their mammalian homologs, these glycosyltransferases use N-acetylglucosamine as an acceptor substrate. However, they transfer N-acetylgalactosamine rather than galactose. This activity, together with amino acid sequence similarity, places them among a group of recently identified invertebrate beta1,4-N-acetylgalactosaminyltransferases. To investigate the biological functions of these genes, null mutations were generated by imprecise excision of a transposable element (beta4GalNAcTA) or by gene-targeted homologous recombination (beta4GalNAcTB). Flies mutant for beta4GalNAcTA are viable and fertile but display behavioral phenotypes suggestive of essential roles for GalNAc-beta1,4-GlcNAc containing glycoconjugates in neuronal and/or muscular function. beta4GalNAcTB mutants are viable and display no evident morphological or behavioral phenotypes. Flies doubly mutant for both genes display only the behavioral phenotypes associated with mutation of beta4GalNAcTA. Thus Drosophila homologs of the mammalian beta4GalT family are essential for neuromuscular physiology or development but are not otherwise required for viability, fertility, or external morphology.
Haines, N, Irvine KD.  2003.  Glycosylation regulates Notch signalling. Nature Reviews Molecular Cell Biology. 4:786-97. AbstractWebsite
Intracellular post-translational modifications such as phosphorylation and ubiquitylation have been well studied for their roles in regulating diverse signalling pathways, but we are only just beginning to understand how differential glycosylation is used to regulate intercellular signalling. Recent studies make clear that extracellular post-translational modifications, in the form of glycosylation, are essential for the Notch signalling pathway, and that differences in the extent of glycosylation are a significant mechanism by which this pathway is regulated.
I
Irvine, KD, Botas J, Jha S, Mann RS, Hogness DS.  1993.  Negative autoregulation by Ultrabithorax controls the level and pattern of its expression. Development. 117:387-99. AbstractWebsite
The Drosophila homeotic gene Ultrabithorax (Ubx) encodes transcriptional regulatory proteins (UBX) that specify thoracic and abdominal segmental identities. Ubx autoregulation was examined by manipulating UBX levels, both genetically and with an inducible transgene, and monitoring the effect of these manipulations on the expression of Ubx and Ubx-lacZ reporter genes. Positive autoregulation by Ubx is restricted to the visceral mesoderm, while in other tissues Ubx negatively autoregulates. In some cases, negative autoregulation stabilizes UBX levels, while in others it modulates the spatial and temporal patterns of UBX expression. This modulation of UBX expression may enable Ubx to specify distinct identities in different segments. The upstream control region of Ubx contains multiple autoregulatory elements for both positive and negative autoregulation.
Irvine, KD, Harvey KF.  2015.  Control of organ growth by patterning and hippo signaling in Drosophila.. Cold Spring Harbor perspectives in biology. 7 AbstractWebsite
Control of organ size is of fundamental importance and is controlled by genetic, environmental, and mechanical factors. Studies in many species have pointed to the existence of both organ-extrinsic and -intrinsic size-control mechanisms, which ultimately must coordinate to regulate organ size. Here, we discuss organ size control by organ patterning and the Hippo pathway, which both act in an organ-intrinsic fashion. The influence of morphogens and other patterning molecules couples growth and patterning, whereas emerging evidence suggests that the Hippo pathway controls growth in response to mechanical stimuli and signals emanating from cell-cell interactions. Several points of cross talk have been reported between signaling pathways that control organ patterning and the Hippo pathway, both at the level of membrane receptors and transcriptional regulators. However, despite substantial progress in the past decade, key questions in the growth-control field remain, including precisely how and when organ patterning and the Hippo pathway communicate to control size, and whether these communication mechanisms are organ specific or general. In addition, elucidating mechanisms by which organ-intrinsic cues, such as patterning factors and the Hippo pathway, interface with extrinsic cues, such as hormones to control organ size, remain unresolved.
Irvine, KD.  1999.  Fringe, Notch, and making developmental boundaries. Current opinion in genetics & development. 9:434-41. AbstractWebsite
Multiple mechanisms are involved in positioning and restricting specialized dorsal-ventral border cells in the Drosophila wing, including modulation of Notch signaling by Fringe, autonomous inhibition by Notch ligands, and inhibition of Notch target genes by Nubbin. Recent studies have revealed that Fringe also modulates a Notch-mediated signaling process between dorsal and ventral cells in the Drosophila eye, establishing an organizer of eye growth and patterning along the dorsal-ventral midline. Fringe-dependent modulation of Notch signaling also plays a key role in Drosophila leg segmentation and growth. Lunatic Fringe has been shown to be required for vertebrate somitogenesis, where it appears to act as a crucial link between a molecular clock and the regulation of Notch signaling.
Irvine, KD, Rauskolb C.  2001.  Boundaries in development: formation and function. Annual Review of Cell and Developmental Biology. 17:189-214. AbstractWebsite
Developing organisms may contain billions of cells destined to differentiate in numerous different ways. One strategy organisms use to simplify the orchestration of development is the separation of cell populations into distinct functional units. Our expanding knowledge of boundary formation and function in different systems is beginning to reveal general principles of this process. Fields of cells are subdivided by the interpretation of morphogen gradients, and these subdivisions are then maintained and refined by local cell-cell interactions. Sharp and stable separation between cell populations requires special mechanisms to keep cells segregated, which in many cases appear to involve the regulation of cell affinity. Once cell populations become distinct, specialized cells are often induced along the borders between them. These boundary cells can then influence the patterning of surrounding cells, which can result in progressively finer subdivisions of a tissue. Much has been learned about the signaling pathways that establish boundaries, but a key challenge for the future remains to elucidate the cellular and molecular mechanisms that actually keep cell populations separated.
Irvine, KD, Vogt TF.  1997.  Dorsal-ventral signaling in limb development. Current Opinion in Cell Biology. 9:867-76. AbstractWebsite
In both Drosophila wings and vertebrate limbs, signaling between dorsal and ventral cells establishes an organizer that promotes limb formation. Significant progress has been made recently towards characterizing the signaling interactions that occur at the dorsal-ventral limb border. Studies of chicks have indicated that, as in Drosophila, this signaling process requires the participation of Fringe. Studies of Drosophila have indicated that Fringe functions by inhibiting the ability of Notch to be activated by one ligand, Serrate, while potentiating the ability of Notch to be activated by another ligand, Delta. Recent studies of both Drosophila and vertebrates have also shed new light on the signaling activity of the dorsal-ventral boundary limb organizer, and have highlighted how this organizer is maintained by feedback mechanisms with neighboring cells.
Irvine, KD, Wieschaus E.  1994.  fringe, a Boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell. 79:595-606. AbstractWebsite
Wing formation in Drosophila requires interactions between dorsal and ventral cells. We describe a new gene, fringe, which is expressed in dorsal cells and encodes for a novel protein that is predicted to be secreted. Wing margin formation and distal wing outgrowth can be induced by the juxtaposition of cells with and without fringe expression, whether at the normal wing margin, at the boundaries of fringe mutant clones in the dorsal wing, or at sites of fringe misexpression in the ventral wing. By contrast, both loss of fringe expression and uniform fringe expression cause wing loss. These observations suggest that fringe encodes a boundary-specific cell-signaling molecule that is responsible for dorsal-ventral cell interactions during wing development.
Irvine, KD.  2008.  A notch sweeter. Cell. 132:177-9. AbstractWebsite
Notch is a key signaling protein mediating cell-fate decisions during development. In this issue, Acar et al. (2008) describe a new gene called rumi that is required for Notch signaling in Drosophila. This gene encodes an O-glucosyltransferase that attaches glucose sugars to serine residues in the multiple EGF domains of the extracellular region of Notch. This modification by Rumi likely influences Notch folding and trafficking.
Irvine, KD, Wieschaus E.  1994.  Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes. Development (Cambridge, England). 120:827-41. AbstractWebsite
After the onset of gastrulation, the Drosophila germband undergoes a morphological change in which its length along the anterior-posterior axis increases over two-and-a-half fold while its width along the dorsal-ventral axis simultaneously narrows. The behavior of individual cells during germband extension was investigated by epi-illumination and time-lapse video microscopy of living embryos. Cells intercalate between their dorsal and ventral neighbors during extension, increasing the number of cells along the anterior-posterior axis while decreasing the number of cells along the dorsal-ventral axis. Mutations that reduce segmental subdivision of the embryo along the anterior-posterior axis decrease both germband extension and its associated cell intercalation. In contrast, cell intercalation and germband extension are still detected in embryos that lack dorsal-ventral polarity. Characterization of germband extension and cell intercalation in mutant embryos with altered segmentation gene expression indicates that these processes are regionally autonomous and are dependent upon the establishment of striped expression patterns for certain pair-rule genes. Based on these observations, we propose a model for germband extension in which cell intercalation results from the establishment of adhesive differences between stripes of cells by pair-rule genes.
Irvine, KD, Helfand SL, Hogness DS.  1991.  The large upstream control region of the Drosophila homeotic gene Ultrabithorax. Development. 111:407-24. AbstractWebsite
Ultrabithorax (Ubx) is a Drosophila homeotic gene that determines the segmental identities of parts of the thorax and abdomen. Appropriate Ubx transcription requires a long upstream control region (UCR) that is defined genetically by the bithoraxoid (bxd) and postbithorax (pbx) subfunction mutations. We have directly analyzed UCR functions by the examination of beta-galactosidase expression in flies containing Ubx-lacZ fusion genes. 35 kb of UCR DNA confers upon beta-galactosidase an expression pattern that closely parallels normal Ubx expression throughout development. In contrast, 22 kb of UCR DNA confers fewer features of normal Ubx expression, and with 5 kb of UCR DNA the expression pattern has no resemblance to Ubx expression except in the visceral mesoderm. We have also shown that bxd chromosome breakpoint mutants form a comparable 5' deletion series in which the severity of the effect on Ubx expression correlates with the amount of upstream DNA remaining in the mutant. In Ubx-lacZ fusions containing 22 kb of UCR DNA, and in comparable bxd mutants, there is a persistent pair-rule pattern of metameric expression in early development, demonstrating that there are distinct mechanisms with different sequence requirements for the initial activation of Ubx in different metameres. The correction of this pair-rule pattern later in embryogenesis shows that there are also distinct mechanisms for the activation of Ubx at different times during development.