Publications

2016
Sun, S, Irvine KD.  2016.  Cellular Organization and Cytoskeletal Regulation of the Hippo Signaling Network.. Trends in cell biology. 26(9):694-704. Abstract
The Hippo signaling network integrates diverse upstream signals to control cell fate decisions and regulate organ growth. Recent studies have provided new insights into the cellular organization of Hippo signaling, its relationship to cell-cell junctions, and how the cytoskeleton modulates Hippo signaling. Cell-cell junctions serve as platforms for Hippo signaling by localizing scaffolding proteins that interact with core components of the pathway. Interactions of Hippo pathway components with cell-cell junctions and the cytoskeleton also suggest potential mechanisms for the regulation of the pathway by cell contact and cell polarity. As our understanding of the complexity of Hippo signaling increases, a future challenge will be to understand how the diverse inputs into the pathway are integrated and to define their respective contributions in vivo.
Pan, Y, Heemskerk I, Ibar C, Shraiman BI, Irvine KD.  2016.  Differential growth triggers mechanical feedback that elevates Hippo signaling.. Proceedings of the National Academy of Sciences of the United States of America. Abstract
Mechanical stress can influence cell proliferation in vitro, but whether it makes a significant contribution to growth control in vivo, and how it is modulated and experienced by cells within developing tissues, has remained unclear. Here we report that differential growth reduces cytoskeletal tension along cell junctions within faster-growing cells. We propose a theoretical model to explain the observed reduction of tension within faster-growing clones, supporting it by computer simulations based on a generalized vertex model. This reduced tension modulates a biomechanical Hippo pathway, decreasing recruitment of Ajuba LIM protein and the Hippo pathway kinase Warts, and decreasing the activity of the growth-promoting transcription factor Yorkie. These observations provide a specific mechanism for a mechanical feedback that contributes to evenly distributed growth, and we show that genetically suppressing mechanical feedback alters patterns of cell proliferation in the developing Drosophila wing. By providing experimental support for the induction of mechanical stress by differential growth, and a molecular mechanism linking this stress to the regulation of growth in developing organs, our results confirm and extend the mechanical feedback hypothesis.
Misra, JR, Irvine KD.  2016.  Vamana Couples Fat Signaling to the Hippo Pathway.. Developmental cell. 39(2):254-266. Abstract
The protocadherins Dachsous and Fat initiate a signaling pathway that controls growth and planar cell polarity by regulating the membrane localization of the atypical myosin Dachs. How Dachs is regulated by Fat signaling has remained unclear. Here we identify the vamana gene as playing a crucial role in regulating membrane localization of Dachs and in linking Fat and Dachsous to Dachs regulation. Vamana, an SH3-domain-containing protein, physically associates with and co-localizes with Dachs and promotes its membrane localization. Vamana also associates with the Dachsous intracellular domain and with a region of the Fat intracellular domain that is essential for controlling Hippo signaling and levels of Dachs. Epistasis experiments, structure-function analysis, and physical interaction experiments argue that Fat negatively regulates Dachs in a Vamana-dependent process. Our findings establish Vamana as a crucial component of the Dachsous-Fat pathway that transmits Fat signaling by regulating Dachs.
Mao, Y, Kuta A, Crespo-Enriquez I, Whiting D, Martin T, Mulvaney J, Irvine KD, Francis-West P.  2016.  Dchs1-Fat4 regulation of polarized cell behaviours during skeletal morphogenesis.. Nature communications. 7:11469. Abstract
Skeletal shape varies widely across species as adaptation to specialized modes of feeding and locomotion, but how skeletal shape is established is unknown. An example of extreme diversity in the shape of a skeletal structure can be seen in the sternum, which varies considerably across species. Here we show that the Dchs1-Fat4 planar cell polarity pathway controls cell orientation in the early skeletal condensation to define the shape and relative dimensions of the mouse sternum. These changes fit a model of cell intercalation along differential Dchs1-Fat4 activity that drives a simultaneous narrowing, thickening and elongation of the sternum. Our results identify the regulation of cellular polarity within the early pre-chondrogenic mesenchyme, when skeletal shape is established, and provide the first demonstration that Fat4 and Dchs1 establish polarized cell behaviour intrinsically within the mesenchyme. Our data also reveal the first indication that cell intercalation processes occur during ventral body wall elongation and closure.
Kuta, A, Mao Y, Martin T, Ferreira de Sousa C, Whiting D, Zakaria S, Crespo-Enriquez I, Evans P, Balczerski B, Mankoo B et al..  2016.  Fat4-Dchs1 signalling controls cell proliferation in developing vertebrae.. Development (Cambridge, England). 143(13):2367-75. Abstract
The protocadherins Fat4 and Dchs1 act as a receptor-ligand pair to regulate many developmental processes in mice and humans, including development of the vertebrae. Based on conservation of function between Drosophila and mammals, Fat4-Dchs1 signalling has been proposed to regulate planar cell polarity (PCP) and activity of the Hippo effectors Yap and Taz, which regulate cell proliferation, survival and differentiation. There is strong evidence for Fat regulation of PCP in mammals but the link with the Hippo pathway is unclear. In Fat4(-/-) and Dchs1(-/-) mice, many vertebrae are split along the midline and fused across the anterior-posterior axis, suggesting that these defects might arise due to altered cell polarity and/or changes in cell proliferation/differentiation. We show that the somite and sclerotome are specified appropriately, the transcriptional network that drives early chondrogenesis is intact, and that cell polarity within the sclerotome is unperturbed. We find that the key defect in Fat4 and Dchs1 mutant mice is decreased proliferation in the early sclerotome. This results in fewer chondrogenic cells within the developing vertebral body, which fail to condense appropriately along the midline. Analysis of Fat4;Yap and Fat4;Taz double mutants, and expression of their transcriptional target Ctgf, indicates that Fat4-Dchs1 regulates vertebral development independently of Yap and Taz. Thus, we have identified a new pathway crucial for the development of the vertebrae and our data indicate that novel mechanisms of Fat4-Dchs1 signalling have evolved to control cell proliferation within the developing vertebrae.
Park, GS, Oh H, Kim M, Kim T, Johnson RL, Irvine KD, Lim D-S.  2016.  An evolutionarily conserved negative feedback mechanism in the Hippo pathway reflects functional difference between LATS1 and LATS2.. Oncotarget. 7(17):24063-75. Abstract
The Hippo pathway represses YAP oncoprotein activity through phosphorylation by LATS kinases. Although variety of upstream components has been found to participate in the Hippo pathway, the existence and function of negative feedback has remained uncertain. We found that activated YAP, together with TEAD transcription factors, directly induces transcription of LATS2, but not LATS1, to form a negative feedback loop. We also observed increased mRNA levels of Hippo upstream components upon YAP activation. To reveal the physiological role of this negative feedback regulation, we deleted Lats2 or Lats1 in the liver-specific Sav1-knockout mouse model which develops a YAP-induced tumor. Additional deletion of Lats2 severely enhanced YAP-induced tumorigenic phenotypes in a liver specific Sav1 knock-out mouse model while additional deletion of Lats1 mildly affected the phenotype. Only Sav1 and Lats2 double knock-down cells formed larger colonies in soft agar assay, thereby recapitulating accelerated tumorigenesis seen in vivo. Importantly, this negative feedback is evolutionarily conserved, as Drosophila Yorkie (YAP ortholog) induces transcription of Warts (LATS2 ortholog) with Scalloped (TEAD ortholog). Collectively, we demonstrated the existence and function of an evolutionarily conserved negative feedback mechanism in the Hippo pathway, as well as the functional difference between LATS1 and LATS2 in regulation of YAP.
2015
Mao, Y, Francis-West P, Irvine KD.  2015.  A Fat4-Dchs1 signal between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching.. Development (Cambridge, England). AbstractWebsite
Formation of the kidney requires reciprocal signaling among the ureteric tubules, cap mesenchyme and surrounding stromal mesenchyme to orchestrate complex morphogenetic events. The protocadherin Fat4 influences signaling from stromal to cap mesenchyme cells to influence their differentiation into nephrons. Here we characterize the role of a putative binding partner of Fat4, the protocadherin Dchs1. Mutation of Dchs1 leads to increased numbers of cap mesenchyme cells, which are abnormally arranged around the ureteric bud tips, and impairs nephron morphogenesis. Mutation of Dchs1 also reduces branching of the ureteric bud and impairs differentiation of ureteric bud tip cells into trunk cells. Genetically, Dchs1 is required specifically within cap mesenschyme cells. The similarity of Dchs1 phenotypes to stromal-less kidneys and to Fat4 mutants implicate Dchs1 in Fat4-dependent stroma-to-cap mesenchyme signaling. Antibody staining of genetic mosaics reveals that Dchs1 protein localization is polarized within cap mesenchyme cells, where it accumulates at the interface with stromal cells, implying that it interacts directly with a stromal protein. Our observations identify a role for Fat4-Dchs1 in signaling between cell layers, implicate Dchs1 as a Fat4 receptor for stromal signaling that is essential for kidney development, and establish that vertebrate Dchs1 can be molecularly polarized in vivo.
Irvine, KD, Harvey KF.  2015.  Control of organ growth by patterning and hippo signaling in Drosophila.. Cold Spring Harbor perspectives in biology. 7 AbstractWebsite
Control of organ size is of fundamental importance and is controlled by genetic, environmental, and mechanical factors. Studies in many species have pointed to the existence of both organ-extrinsic and -intrinsic size-control mechanisms, which ultimately must coordinate to regulate organ size. Here, we discuss organ size control by organ patterning and the Hippo pathway, which both act in an organ-intrinsic fashion. The influence of morphogens and other patterning molecules couples growth and patterning, whereas emerging evidence suggests that the Hippo pathway controls growth in response to mechanical stimuli and signals emanating from cell-cell interactions. Several points of cross talk have been reported between signaling pathways that control organ patterning and the Hippo pathway, both at the level of membrane receptors and transcriptional regulators. However, despite substantial progress in the past decade, key questions in the growth-control field remain, including precisely how and when organ patterning and the Hippo pathway communicate to control size, and whether these communication mechanisms are organ specific or general. In addition, elucidating mechanisms by which organ-intrinsic cues, such as patterning factors and the Hippo pathway, interface with extrinsic cues, such as hormones to control organ size, remain unresolved.
Ambegaonkar, AA, Irvine KD.  2015.  Coordination of planar cell polarity pathways through Spiny legs. eLife. 4:pii:e09946.
Sun, S, Reddy BVVG, Irvine KD.  2015.  Localization of Hippo Signaling complexes and Warts activation in vivo. Nature Communications. 6:8402.
Durst, R, Peal DS, deVlaming A, Leyne M, Talkowski M, Perrocheau M, Simpson C, Jett C, Stone MR, Charles F et al..  2015.  Mutations in DCHS1 Cause Mitral Valve Prolapse. Nature. :inpress.
2014
Zakaria, S, Mao Y, Kuta A, Ferreira de Sousa C, Gaufo GO, Mcneill H, Hindges R, Guthrie S, Irvine KD, Francis-West PH.  2014.  Regulation of neuronal migration by dchs1-fat4 planar cell polarity.. Current biology : CB. 24:1620-1627. AbstractWebsite
Planar cell polarity (PCP) describes the polarization of cell structures and behaviors within the plane of a tissue. PCP is essential for the generation of tissue architecture during embryogenesis and for postnatal growth and tissue repair, yet how it is oriented to coordinate cell polarity remains poorly understood [1]. In Drosophila, PCP is mediated via the Frizzled-Flamingo (Fz-PCP) and Dachsous-Fat (Fat-PCP) pathways [1-3]. Fz-PCP is conserved in vertebrates, but an understanding in vertebrates of whether and how Fat-PCP polarizes cells, and its relationship to Fz-PCP signaling, is lacking. Mutations in human FAT4 and DCHS1, key components of Fat-PCP signaling, cause Van Maldergem syndrome, characterized by severe neuronal abnormalities indicative of altered neuronal migration [4]. Here, we investigate the role and mechanisms of Fat-PCP during neuronal migration using the murine facial branchiomotor (FBM) neurons as a model. We find that Fat4 and Dchs1 are expressed in complementary gradients and are required for the collective tangential migration of FBM neurons and for their PCP. Fat4 and Dchs1 are required intrinsically within the FBM neurons and extrinsically within the neuroepithelium. Remarkably, Fat-PCP and Fz-PCP regulate FBM neuron migration along orthogonal axes. Disruption of the Dchs1 gradients by mosaic inactivation of Dchs1 alters FBM neuron polarity and migration. This study implies that PCP in vertebrates can be regulated via gradients of Fat4 and Dchs1 expression, which establish intracellular polarity across FBM cells during their migration. Our results also identify Fat-PCP as a novel neuronal guidance system and reveal that Fat-PCP and Fz-PCP can act along orthogonal axes.
Oh, H, Slattery M, Ma L, White KP, Mann RS, Irvine KD.  2014.  Yorkie Promotes Transcription by Recruiting a Histone Methyltransferase Complex.. Cell reports. AbstractWebsite
Hippo signaling limits organ growth by inhibiting the transcriptional coactivator Yorkie. Despite the key role of Yorkie in both normal and oncogenic growth, the mechanism by which it activates transcription has not been defined. We report that Yorkie binding to chromatin correlates with histone H3K4 methylation and is sufficient to locally increase it. We show that Yorkie can recruit a histone methyltransferase complex through binding between WW domains of Yorkie and PPxY sequence motifs of NcoA6, a subunit of the Trithorax-related (Trr) methyltransferase complex. Cell culture and in vivo assays establish that this recruitment of NcoA6 contributes to Yorkie's ability to activate transcription. Mammalian NcoA6, a subunit of Trr-homologous methyltransferase complexes, can similarly interact with Yorkie's mammalian homolog YAP. Our results implicate direct recruitment of a histone methyltransferase complex as central to transcriptional activation by Yorkie, linking the control of cell proliferation by Hippo signaling to chromatin modification.
Rauskolb, C, Sun S, Sun G, Pan Y, Irvine KD.  2014.  Cytoskeletal Tension Inhibits Hippo Signaling through an Ajuba-Warts Complex.. Cell. 158:143-156. AbstractWebsite
Mechanical forces have been proposed to modulate organ growth, but a molecular mechanism that links them to growth regulation in vivo has been lacking. We report that increasing tension within the cytoskeleton increases Drosophila wing growth, whereas decreasing cytoskeletal tension decreases wing growth. These changes in growth can be accounted for by changes in the activity of Yorkie, a transcription factor regulated by the Hippo pathway. The influence of myosin activity on Yorkie depends genetically on the Ajuba LIM protein Jub, a negative regulator of Warts within the Hippo pathway. We further show that Jub associates with α-catenin and that its localization to adherens junctions and association with α-catenin are promoted by cytoskeletal tension. Jub recruits Warts to junctions in a tension-dependent manner. Our observations delineate a mechanism that links cytoskeletal tension to regulation of Hippo pathway activity, providing a molecular understanding of how mechanical forces can modulate organ growth.
Codelia, V, Sun G, Irvine KD.  2014.  Regulation of YAP by Mechanical Strain through Jnk and Hippo Signaling. Current Biology. 24:2012-2017.Website
Sun, G, Irvine KD.  2014.  Control of growth during regeneration.. Current topics in developmental biology. 108:95-120. AbstractWebsite
Regeneration is a process by which organisms replace damaged or amputated organs to restore normal body parts. Regeneration of many tissues or organs requires proliferation of stem cells or stem cell-like blastema cells. This regenerative growth is often initiated by cell death pathways induced by damage. The executors of regenerative growth are a group of growth-promoting signaling pathways, including JAK/STAT, EGFR, Hippo/YAP, and Wnt/β-catenin. These pathways are also essential to developmental growth, but in regeneration, they are activated in distinct ways and often at higher strengths, under the regulation by certain stress-responsive signaling pathways, including JNK signaling. Growth suppressors are important in termination of regeneration to prevent unlimited growth and also contribute to the loss of regenerative capacity in nonregenerative organs. Here, we review cellular and molecular growth regulation mechanisms induced by organ damage in several models with different regenerative capacities.
Xu, A, Irvine KD.  2014.  Notch-ligand binding assays in Drosophila cells.. Methods in molecular biology (Clifton, NJ). 1187:277-284. AbstractWebsite
Activation of the Drosophila transmembrane receptor protein Notch is induced by association with its transmembrane ligands, Delta and Serrate. The ability to assay binding between Notch and its ligands has been essential for characterizing the influence of posttranslational modifications, such as glycosylation, as well as for characterizing structural motifs involved in receptor-ligand interactions. We describe here a simple, widely used method for assaying receptor-ligand binding. This method involves expression of soluble forms of either Notch or its ligands, comprising the extracellular domains fused to an easily assayed tag, the enzyme alkaline phosphatase. These soluble proteins are then incubated with their binding partners, either as transmembrane proteins expressed on the surface of cultured cells or as extracellular protein domains attached to agarose beads. After washing, the amount of bound protein can be readily assayed by measuring alkaline phosphatase activity.
2013
Mani, M, Goyal S, Irvine KD, Shraiman BI.  2013.  Collective polarization model for gradient sensing via Dachsous-Fat intercellular signaling.. Proceedings of the National Academy of Sciences of the United States of America. AbstractWebsite
Dachsous-Fat signaling via the Hippo pathway influences proliferation during Drosophila development, and some of its mammalian homologs are tumor suppressors, highlighting its role as a universal growth regulator. The Fat/Hippo pathway responds to morphogen gradients and influences the in-plane polarization of cells and orientation of divisions, linking growth with tissue patterning. Remarkably, the Fat pathway transduces a growth signal through the polarization of transmembrane complexes that responds to both morphogen level and gradient. Dissection of these complex phenotypes requires a quantitative model that provides a systematic characterization of the pathway. In the absence of detailed knowledge of molecular interactions, we take a phenomenological approach that considers a broad class of simple models, which are sufficiently constrained by observations to enable insight into possible mechanisms. We predict two modes of local/cooperative interactions among Fat-Dachsous complexes, which are necessary for the collective polarization of tissues and enhanced sensitivity to weak gradients. Collective polarization convolves level and gradient of input signals, reproducing known phenotypes while generating falsifiable predictions. Our construction of a simplified signal transduction map allows a generalization of the positional value model and emphasizes the important role intercellular interactions play in growth and patterning of tissues.
Oh, H, Slattery M, Ma L, Crofts A, White KP, Mann RS, Irvine KD.  2013.  Genome-wide Association of Yorkie with Chromatin and Chromatin-Remodeling Complexes.. Cell Reports. 3:309-318. AbstractWebsite
The Hippo pathway regulates growth through the transcriptional coactivator Yorkie, but how Yorkie promotes transcription remains poorly understood. We address this by characterizing Yorkie's association with chromatin and by identifying nuclear partners that effect transcriptional activation. Coimmunoprecipitation and mass spectrometry identify GAGA factor (GAF), the Brahma complex, and the Mediator complex as Yorkie-associated nuclear protein complexes. All three are required for Yorkie's transcriptional activation of downstream genes, and GAF and the Brahma complex subunit Moira interact directly with Yorkie. Genome-wide chromatin-binding experiments identify thousands of Yorkie sites, most of which are associated with elevated transcription, based on genome-wide analysis of messenger RNA and histone H3K4Me3 modification. Chromatin binding also supports extensive functional overlap between Yorkie and GAF. Our studies suggest a widespread role for Yorkie as a regulator of transcription and identify recruitment of the chromatin-modifying GAF protein and BRM complex as a molecular mechanism for transcriptional activation by Yorkie.
Pan, G, Feng Y, Ambegaonkar AA, Sun G, Huff M, Rauskolb C, Irvine KD.  2013.  Signal transduction by the Fat cytoplasmic domain.. Development. AbstractWebsite
The large atypical cadherin Fat is a receptor for both Hippo and planar cell polarity (PCP) pathways. Here we investigate the molecular basis for signal transduction downstream of Fat by creating targeted alterations within a genomic construct that contains the entire fat locus, and by monitoring and manipulating the membrane localization of the Fat pathway component Dachs. We establish that the human Fat homolog FAT4 lacks the ability to transduce Hippo signaling in Drosophila, but can transduce Drosophila PCP signaling. Targeted deletion of conserved motifs identifies a four amino acid C-terminal motif that is essential for aspects of Fat-mediated PCP, and other internal motifs that contribute to Fat-Hippo signaling. Fat-Hippo signaling requires the Drosophila Casein kinase 1_ encoded by discs overgrown (Dco), and we characterize candidate Dco phosphorylation sites in the Fat intracellular domain (ICD), the mutation of which impairs Fat-Hippo signaling. Through characterization of Dachs localization and directed membrane targeting of Dachs, we show that localization of Dachs influences both the Hippo and PCP pathways. Our results identify a conservation of Fat-PCP signaling mechanisms, establish distinct functions for different regions of the Fat ICD, support the correlation of Fat ICD phosphorylation with Fat-Hippo signaling, and confirm the importance of Dachs membrane localization to downstream signaling pathways.
Reddy, BVVG, Irvine KD.  2013.  Regulation of Hippo Signaling by EGFR-MAPK Signaling through Ajuba Family Proteins.. Developmental Cell. 24:459-471. AbstractWebsite
EGFR and Hippo signaling pathways both control growth and, when dysregulated, contribute to tumorigenesis. We find that EGFR activates the Hippo pathway transcription factor Yorkie and demonstrate that Yorkie is required for the influence of EGFR on cell proliferation in Drosophila. EGFR regulates Yorkie through the influence of its Ras-MAPK branch on the Ajuba LIM protein Jub. Jub is epistatic to EGFR and Ras for Yorkie regulation, Jub is subject to MAPK-dependent phosphorylation, and EGFR-Ras-MAPK signaling enhances Jub binding to the Yorkie kinase Warts and the adaptor protein Salvador. An EGFR-Hippo pathway link is conserved in mammals, as activation of EGFR or RAS activates the Yorkie homolog YAP, and EGFR-RAS-MAPK signaling promotes phosphorylation of the Ajuba family protein WTIP and also enhances WTIP binding to the Warts and Salvador homologs LATS and WW45. Our observations implicate the Hippo pathway in EGFR-mediated tumorigenesis and identify a molecular link between these pathways.
Sun, G, Irvine KD.  2013.  Ajuba Family Proteins Link JNK to Hippo Signaling.. Science signaling. 6:ra81. AbstractWebsite
Wounding, apoptosis, or infection can trigger a proliferative response in neighboring cells to replace damaged tissue. Studies in Drosophila have implicated c-Jun amino-terminal kinase (JNK)-dependent activation of Yorkie (Yki) as essential to regeneration-associated growth, as well as growth associated with neoplastic tumors. Yki is a transcriptional coactivator that is inhibited by Hippo signaling, a conserved pathway that regulates growth. We identified a conserved mechanism by which JNK regulated Hippo signaling. Genetic studies in Drosophila identified Jub (also known as Ajuba LIM protein) as required for JNK-mediated activation of Yki and showed that Jub contributed to wing regeneration after wounding and to tumor growth. Biochemical studies revealed that JNK promoted the phosphorylation of Ajuba family proteins in both Drosophila and mammalian cells. Binding studies in mammalian cells indicated that JNK increased binding between the Ajuba family proteins LIMD1 or WTIP and LATS1, a kinase within the Hippo pathway that inhibits the Yki homolog YAP. Moreover, JNK promoted binding of LIMD1 and LATS1 through direct phosphorylation of LIMD1. These results identify Ajuba family proteins as a conserved link between JNK and Hippo signaling, and imply that JNK increases Yki and YAP activity by promoting the binding of Ajuba family proteins to Warts and LATS.
2012
Irvine, KD.  2012.  Integration of intercellular signaling through the Hippo pathway.. Seminars in Cell and Developmental Biology. AbstractWebsite
Metazoan cells are exposed to a multitude of signals, which they integrate to determine appropriate developmental or physiological responses. Although the Hippo pathway was only discovered recently, and our knowledge of Hippo signal transduction is far from complete, a wealth of interconnections amongst Hippo and other signaling pathways have already been identified. Hippo signaling is particularly important for growth control, and I describe how integration of Hippo and other pathways contributes to regulation of organ growth. Molecular links between Hippo signaling and other signal transduction pathways are summarized. Different types of mechanisms for signal integration are described, and examples of how the complex interconnections between pathways are used to guide developmental and physiological growth responses are discussed. Features of Hippo signaling appear to make it particularly well suited to signal integration, including its responsiveness to cell-cell contact and the mediation of its transcriptional output by transcriptional co-activator proteins that can interact with transcription factors of other pathways.
Ambegaonkar, AA, Pan G, Mani M, Feng Y, Irvine KD.  2012.  Propagation of dachsous-fat planar cell polarity.. Current Biology. 22:1302-1308. AbstractWebsite
The Fat pathway controls both planar cell polarity (PCP) and organ growth [1, 2]. Fat signaling is regulated by the graded expression of the Fat ligand Dachsous (Ds) and the cadherin-domain kinase Four-jointed (Fj). The vectors of these gradients influence PCP [1], whereas their slope can influence growth [3, 4]. The Fj and Ds gradients direct the polarized membrane localization of the myosin Dachs, which is a crucial downstream component of Fat signaling [5-7]. Here we show that repolarization of Dachs by differential expression of Fj or Ds can propagate through the wing disc, which indicates that Fj and Ds gradients can be measured over long range. Through characterization of tagged genomic constructs, we show that Ds and Fat are themselves partially polarized along the endogenous Fj and Ds gradients, providing a mechanism for propagation of PCP within the Fat pathway. We also identify a biochemical mechanism that might contribute to this polarization by showing that Ds is subject to endoproteolytic cleavage and that the relative levels of Ds isoforms are modulated by Fat.
Singh, A, Irvine KD.  2012.  Drosophila as a model for understanding development and disease.. Developmental Dynamics. 241:1-2.Website