Publications

Filters: First Letter Of Title is B  [Clear All Filters]
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
B
Skirpan, A, Culler A H, Gallavotti A, Jackson D, Cohen JD, McSteen P.  2009.  BARREN INFLORESCENCE2 Interaction with ZmPIN1a Suggests a role in Auxin Transport During Maize Inflorescence Development. Plant Cell Physiol. 50:652-657. Abstract
Polar auxin transport, mediated by the PIN-FORMED (PIN) class of auxin efflux carriers, controls organ initiation in plants. In maize, BARREN INFLORESCENCE2 (BIF2) encodes a serine/threonine protein kinase co-orthologous to PINOID (PID), which regulates the subcellular localization of AtPIN1 in Arabidopsis. We show that BIF2 phosphorylates ZmPIN1a, a maize homolog of AtPIN1, in vitro and regulates ZmPIN1a subcellular localization in vivo, similar to the role of PID in Arabidopsis. In addition, bif2 mutant inflorescences have lower auxin levels later in development. We propose that BIF2 regulates auxin transport through direct regulation of ZmPIN1a during maize inflorescence development.
Gallavotti, A, Malcomber S, Gaines C, Stanfield S, Whipple C, Kellogg E, Schmidt RJ.  2011.  BARREN STALK FASTIGIATE1 is an AT-hook Protein Required for the Formation of Maize ears. Plant Cell. 23:1756-1771. AbstractWebsite
Ears are the seed-bearing inflorescences of maize (Zea mays) plants and represent a crucial component of maize yield. The first step in the formation of ears is the initiation of axillary meristems in the axils of developing leaves. In the classic maize mutant barren stalk fastigiate1 (baf1), first discovered in the 1950s, ears either do not form or, if they do, are partially fused to the main stalk. We positionally cloned Baf1 and found that it encodes a transcriptional regulator containing an AT-hook DNA binding motif. Single coorthologs of Baf1 are found in syntenic regions of brachypodium (Brachypodium distachyon), rice (Oryza sativa), and sorghum (Sorghum bicolor), suggesting that the gene is likely present in all cereal species. Protein-protein interaction assays suggest that BAF1 is capable of forming homodimers and heterodimers with other members of the AT-hook family. Another transcriptional regulator required for ear initiation is the basic helix-loop-helix protein BARREN STALK1 (BA1). Genetic and expression analyses suggest that Baf1 is required to reach a threshold level of Ba1 expression for the initiation of maize ears. We propose that Baf1 functions in the demarcation of a boundary region essential for the specification of a stem cell niche.
Chatterjee, M, Tabi Z, Galli M, Malcomber S, Buck A, Muszynski M, Gallavotti A.  2014.  The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility. Plant Cell. (26):2962-2977. AbstractWebsite
Although boron has a relatively low natural abundance, it is an essential plant micronutrient. Boron deficiencies cause major crop losses in several areas of the world, affecting reproduction and yield in diverse plant species. Despite the importance of boron in crop productivity, surprisingly little is known about its effects on developing reproductive organs. We isolated a maize (Zea mays) mutant, called rotten ear (rte), that shows distinct defects in vegetative and reproductive development, eventually causing widespread sterility in its inflorescences, the tassel and the ear. Positional cloning revealed that rte encodes a membrane-localized boron efflux transporter, co-orthologous to the Arabidopsis thaliana BOR1 protein. Depending on the availability of boron in the soil, rte plants show a wide range of phenotypic defects that can be fully rescued by supplementing the soil with exogenous boric acid, indicating that rte is crucial for boron transport into aerial tissues. rte is expressed in cells surrounding the xylem in both vegetative and reproductive tissues and is required for meristem activity and organ development.We show that low boron supply to the inflorescences results in widespread defects in cell and cell wall integrity, highlighting the structural importance of boron in the formation of fully fertile reproductive organs.