A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Altman, S, Bassler BL, Beckwith J, Belfort M, Berg HC, Bloom B, Brenchley JE, Campbell A, Collier JR, Connell N et al..  2005.  An open letter to Elias Zerhouni.. Science (New York, N.Y.). 307(5714):1409-10.
Bayro, MJ, Mukhopadhyay J, Swapna GVT, Huang JY, Ma L-C, Sineva E, Dawson PE, Montelione GT, Ebright RH.  2003.  Structure of antibacterial peptide microcin J25: a 21-residue lariat protoknot.. Journal of the American Chemical Society. 125(41):12382-3. Abstract
The antibacterial peptide microcin J25 (MccJ25) inhibits bacterial transcription by binding within, and obstructing, the nucleotide-uptake channel of bacterial RNA polymerase. Published covalent and three-dimensional structures indicate that MccJ25 is a 21-residue cycle. Here, we show that the published covalent and three-dimensional structures are incorrect, and that MccJ25 in fact is a 21-residue "lariat protoknot", consisting of an 8-residue cyclic segment followed by a 13-residue linear segment that loops back and threads through the cyclic segment. MccJ25 is the first example of a lariat protoknot involving a backbone-side chain amide linkage.
Benoff, B, Yang H, Lawson CL, Parkinson G, Liu J, Blatter E, Ebright YW, Berman HM, Ebright RH.  2002.  Structural basis of transcription activation: the CAP-alpha CTD-DNA complex.. Science (New York, N.Y.). 297(5586):1562-6. Abstract
The Escherichia coli catabolite activator protein (CAP) activates transcription at P(lac), P(gal), and other promoters through interactions with the RNA polymerase alpha subunit carboxyl-terminal domain (alphaCTD). We determined the crystal structure of the CAP-alphaCTD-DNA complex at a resolution of 3.1 angstroms. CAP makes direct protein-protein interactions with alphaCTD, and alphaCTD makes direct protein-DNA interactions with the DNA segment adjacent to the DNA site for CAP. There are no large-scale conformational changes in CAP and alphaCTD, and the interface between CAP and alphaCTD is small. These findings are consistent with the proposal that activation involves a simple "recruitment" mechanism.
Berk, AJ, Boyer TG, Kapanidis AN, Ebright RH, Kobayashi NN, Horn PJ, Sullivan SM, Koop R, Surby MA, Triezenberg SJ.  1998.  Mechanisms of viral activators.. Cold Spring Harbor symposia on quantitative biology. 63:243-52. Abstract
Adenovirus large E1A, Epstein-Barr virus Zebra, and herpes simplex virus VP16 were studied as models of animal cell transcriptional activators. Large E1A can activate transcription from a TATA box, a result that leads us to suggest that it interacts with a general transcription factor. Initial studies showed that large E1A binds directly to the TBP subunit of TFIID. However, analysis of multiple E1A and TBP mutants failed to support the significance of this in vitro interaction for the mechanism of activation. Recent studies to be reported elsewhere indicate that conserved region 3 of large E1A, which is required for its activation function, binds to one subunit of a multisubunit protein that stimulates in vitro transcription in response to large E1A and other activators. A method was developed for the rapid purification of TFIID approximately 25,000-fold to near homogeneity from a cell line engineered to express an epitope-tagged form of TBP. Purified TFIID contains 11 major TAFs ranging in mass from approximately 250 to 20 kD. Zta and VP16, but not large E1A, greatly stimulate the rate and extent of assembly of a TFIID-TFIIA complex on promoter DNA (DA complex). For VP16, this is a function of the carboxy-terminal activation subdomain. An excellent correlation was found between the ability of VP16C mutants to stimulate DA complex assembly and their ability to activate transcription in vivo. Consequently, for a subset of activation domains, DA complex assembly activity is an important component of the overall mechanism of activation.
Bird, JG, Nickels BE, Ebright RH.  2017.  RNA Capping by Transcription Initiation with Non-canonical Initiating Nucleotides (NCINs): Determination of Relative Efficiencies of Transcription Initiation with NCINs and NTPs.. Bio-protocol. 7(12) Abstract
It recently has been established that adenine-containing cofactors, including nicotinamide adenine dinucleotide (NAD(+)), reduced nicotinamide adenine dinucleotide (NADH), and 3'-desphospho-coenzyme A (dpCoA), can serve as 'non-canonical initiating nucleotides' (NCINs) for transcription initiation by bacterial and eukaryotic cellular RNA polymerases (RNAPs) and that the efficiency of the reaction is determined by promoter sequence (Bird et al., 2016). Here we describe a protocol to quantify the relative efficiencies of transcription initiation using an NCIN vs. transcription initiation using a nucleoside triphosphate (NTP) for a given promoter sequence.
Bird, JG, Zhang Y, Tian Y, Panova N, Barvík I, Greene L, Liu M, Buckley B, Krásný L, Lee JK et al..  2016.  The mechanism of RNA 5' capping with NAD(+), NADH and desphospho-CoA.. Nature. 525(7612):444-447. Abstract
The chemical nature of the 5' end of RNA is a key determinant of RNA stability, processing, localization and translation efficiency, and has been proposed to provide a layer of 'epitranscriptomic' gene regulation. Recently it has been shown that some bacterial RNA species carry a 5'-end structure reminiscent of the 5' 7-methylguanylate 'cap' in eukaryotic RNA. In particular, RNA species containing a 5'-end nicotinamide adenine dinucleotide (NAD(+)) or 3'-desphospho-coenzyme A (dpCoA) have been identified in both Gram-negative and Gram-positive bacteria. It has been proposed that NAD(+), reduced NAD(+) (NADH) and dpCoA caps are added to RNA after transcription initiation, in a manner analogous to the addition of 7-methylguanylate caps. Here we show instead that NAD(+), NADH and dpCoA are incorporated into RNA during transcription initiation, by serving as non-canonical initiating nucleotides (NCINs) for de novo transcription initiation by cellular RNA polymerase (RNAP). We further show that both bacterial RNAP and eukaryotic RNAP II incorporate NCIN caps, that promoter DNA sequences at and upstream of the transcription start site determine the efficiency of NCIN capping, that NCIN capping occurs in vivo, and that NCIN capping has functional consequences. We report crystal structures of transcription initiation complexes containing NCIN-capped RNA products. Our results define the mechanism and structural basis of NCIN capping, and suggest that NCIN-mediated 'ab initio capping' may occur in all organisms.
Blatter, EE, Ebright YW, Ebright RH.  1992.  Identification of an amino acid-base contact in the GCN4-DNA complex by bromouracil-mediated photocrosslinking.. Nature. 359(6396):650-2. Abstract
The bZIP DNA-binding proteins are characterized by a 50-amino-acid DNA binding and dimerization motif, consisting of a highly basic DNA-binding region ('b') followed by a leucine zipper dimerization region ('ZIP'). The best characterized bZIP DNA-binding protein is GCN4, a yeast transcriptional activator. GCN4 binds to a 9-base-pair two-fold-symmetric DNA site, 5'-A-4T-3G-2A-1C0T+1C+2A+3T+4-3' (refs 7-10). A detailed model known as the 'induced helical fork' model has been proposed for the structure of the GCN4-DNA complex. Using a site-specific bromouracil-mediated photocrosslinking method, we show here that the alanine at position 238 of GCN4 contacts, or is close to, the thymine 5-methyl of A.T at position +3 of the DNA site in the GCN4-DNA complex. Our results strongly support the induced helical fork model. Our site-specific bromouracil-mediated photocrosslinking method requires no prior information regarding the structure of the protein or the structure of the protein-DNA complex and should be generalizable to DNA-binding proteins that interact with the DNA major groove.
Blatter, EE, Ross W, Tang H, Gourse RL, Ebright RH.  1994.  Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding.. Cell. 78(5):889-96. Abstract
Using limited proteolysis, we show that the Escherichia coli RNA polymerase alpha subunit consists of an N-terminal domain comprised of amino acids 8-241, a C-terminal domain comprised of amino acids 249-329, and an unstructured and/or flexible interdomain linker. We have carried out a detailed structural and functional analysis of an 85 amino acid proteolytic fragment corresponding to the C-terminal domain (alpha CTD-2). Our results establish that alpha CTD-2 has a defined secondary structure (approximately 40% alpha helix, approximately 0% beta sheet). Our results further establish that alpha CTD-2 is a dimer and that alpha CTD-2 exhibits sequence-specific DNA binding activity. Our results suggest a model for the mechanism of involvement of alpha in transcription activation by promoter upstream elements and upstream-binding activator proteins.
Boucher, HW, Ambrose PG, Chambers HF, Ebright RH, Jezek A, Murray BE, Newland JG, Ostrowsky B, Rex JH.  2017.  White Paper: Developing Antimicrobial Drugs for Resistant Pathogens, Narrow-spectrum Indications, and Unmet Needs.. Journal of Infectious Diseases. 216:226-238. Abstract
Despite progress in antimicrobial drug development, a critical need persists for new, feasible pathways to develop antibacterial agents to treat people infected with drug-resistant bacteria. Infections due to resistant Gram-negative bacilli continue to cause unacceptable morbidity and mortality. Antibacterial agents have been traditionally studied in non-inferiority clinical trials that focus on one site of infection (eg, complicated urinary tract infections, intra-abdominal infections), yet these designs may not be optimal, and often are not feasible, for study of infections caused by drug-resistant bacteria. Over the past several years, multiple stakeholders have worked to develop consensus regarding paths forward with a goal of facilitating timely conduct of antimicrobial development. Here we advocate for a novel and pragmatic approach and, towards this end, present feasible trial designs for antibacterial agents that could enable conduct of narrow-spectrum, organism-specific clinical trials and ultimately approval of critically needed new antibacterial agents.
Boyer, LA, Shao X, Ebright RH, Peterson CL.  2000.  Roles of the histone H2A-H2B dimers and the (H3-H4)(2) tetramer in nucleosome remodeling by the SWI-SNF complex.. The Journal of biological chemistry. 275(16):11545-52. Abstract
SWI-SNF is an ATP-dependent chromatin remodeling complex required for expression of a number of yeast genes. Previous studies have suggested that SWI-SNF action may remove or rearrange the histone H2A-H2B dimers or induce a novel alteration in the histone octamer. Here, we have directly tested these and other models by quantifying the remodeling activity of SWI-SNF on arrays of (H3-H4)(2) tetramers, on nucleosomal arrays reconstituted with disulfide-linked histone H3, and on arrays reconstituted with histone H3 derivatives site-specifically modified at residue 110 with the fluorescent probe acetylethylenediamine-(1,5)-naphthol sulfonate. We find that SWI-SNF can remodel (H3-H4)(2) tetramers, although tetramers are poor substrates for SWI-SNF remodeling compared with nucleosomal arrays. SWI-SNF can also remodel nucleosomal arrays that harbor disulfide-linked (H3-H4)(2) tetramers, indicating that SWI-SNF action does not involve an obligatory disruption of the tetramer. Finally, we find that although the fluorescence emission intensity of acetylethylenediamine-(1,5)-naphthol sulfonate-modified histone H3 is sensitive to octamer structure, SWI-SNF action does not alter fluorescence emission intensity. These data suggest that perturbation of the histone octamer is not a requirement or a consequence of ATP-dependent nucleosome remodeling by SWI-SNF.
Busby, S, Ebright RH.  1999.  Transcription activation by catabolite activator protein (CAP).. Journal of molecular biology. 293(2):199-213. Abstract
Transcription activation by Escherichia coli catabolite activator protein (CAP) at each of two classes of simple CAP-dependent promoters is understood in structural and mechanistic detail. At class I CAP-dependent promoters, CAP activates transcription from a DNA site located upstream of the DNA site for RNA polymerase holoenzyme (RNAP); at these promoters, transcription activation involves protein-protein interactions between CAP and the RNAP alpha subunit C-terminal domain that facilitate binding of RNAP to promoter DNA to form the RNAP-promoter closed complex. At class II CAP-dependent promoters, CAP activates transcription from a DNA site that overlaps the DNA site for RNAP; at these promoters, transcription activation involves both: (i) protein-protein interactions between CAP and RNAP alpha subunit C-terminal domain that facilitate binding of RNAP to promoter DNA to form the RNAP-promoter closed complex; and (ii) protein-protein interactions between CAP and RNAP alpha subunit N-terminal domain that facilitates isomerization of the RNAP-promoter closed complex to the RNAP-promoter open complex. Straightforward combination of the mechanisms for transcription activation at class I and class II CAP-dependent promoters permits synergistic transcription activation by multiple molecules of CAP, or by CAP and other activators. Interference with determinants of CAP or RNAP involved in transcription activation at class I and class II CAP-dependent promoters permits "anti-activation" by negative regulators. Basic features of transcription activation at class I and class II CAP-dependent promoters appear to be generalizable to other activators.
Busby, S, Ebright RH.  1997.  Transcription activation at class II CAP-dependent promoters.. Molecular microbiology. 23(5):853-9. Abstract
Transcription activation at Class II CAP-dependent promoters provides a paradigm for understanding how a single activator molecule can make multiple interactions with the transcription machinery, with each interaction being responsible for a specific mechanistic consequence. At Class II CAP-dependent promoters, the DNA target site for CAP is centred near position -42, overlapping and replacing the -35 determinant for binding of RNA polymerase (RNAP). Transcription activation requires two distinct mechanistic components. The first component is 'anti-inhibition,' overcoming an inhibitory effect of the RNAP alpha subunit C-terminal domain (alpha CTD). This component involves direct contact between amino acids 156-164 (activating region 1) of the upstream subunit of the CAP dimer and a target in alpha CTD. The second component is 'direct activation', facilitating isomerization of the RNAP-promoter closed complex to the transcriptionally competent open complex. This component involves direct contact between amino acids 19, 21 and 101 (activating region 2) of the downstream subunit of the CAP dimer and a target in the RNAP alpha subunit N-terminal domain (alpha NTD).
Cellai, S, Mangiarotti L, Vannini N, Naryshkin N, Kortkhonjia E, Ebright RH, Rivetti C.  2007.  Upstream promoter sequences and alphaCTD mediate stable DNA wrapping within the RNA polymerase-promoter open complex.. EMBO reports. 8(3):271-8. Abstract
We show that the extent of stable DNA wrapping by Escherichia coli RNA polymerase (RNAP) in the RNAP-promoter open complex depends on the sequence of the promoter and, in particular, on the sequence of the upstream region of the promoter. We further show that the extent of stable DNA wrapping depends on the presence of the RNAP alpha-subunit carboxy-terminal domain and on the presence and length of the RNAP alpha-subunit interdomain linker. Our results indicate that the extensive stable DNA wrapping observed previously in the RNAP-promoter open complex at the lambda P(R) promoter is not a general feature of RNAP-promoter open complexes.
Chakraborty, A, Wang D, Ebright YW, Korlann Y, Kortkhonjia E, Kim T, Chowdhury S, Wigneshweraraj S, Irschik H, Jansen R et al..  2012.  Opening and closing of the bacterial RNA polymerase clamp.. Science (New York, N.Y.). 337(6094):591-5. AbstractWebsite
Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.
Chakraborty, A, Mazumder A, Lin M, Hasemeyer A, Xu Q, Wang D, Ebright YW, Ebright RH.  2015.  Site-specific incorporation of probes into RNA polymerase by unnatural-amino-acid mutagenesis and Staudinger-Bertozzi ligation.. Methods in molecular biology (Clifton, N.J.). 1276:101-31. Abstract
A three-step procedure comprising (1) unnatural-amino-acid mutagenesis with 4-azido-phenylalanine, (2) Staudinger-Bertozzi ligation with a probe-phosphine derivative, and (3) in vitro reconstitution of RNA polymerase (RNAP) enables the efficient site-specific incorporation of a fluorescent probe, a spin label, a cross-linking agent, a cleaving agent, an affinity tag, or any other biochemical or biophysical probe, at any site of interest in RNAP. Straightforward extensions of the procedure enable the efficient site-specific incorporation of two or more different probes in two or more different subunits of RNAP. We present protocols for synthesis of probe-phosphine derivatives, preparation of RNAP subunits and the transcription initiation factor σ, unnatural amino acid mutagenesis of RNAP subunits and σ, Staudinger ligation with unnatural-amino-acid-containing RNAP subunits and σ, quantitation of labelling efficiency and labelling specificity, and reconstitution of RNAP.
Chakraborty, A, Wang D, Ebright YW, Ebright RH.  2010.  Azide-specific labeling of biomolecules by Staudinger-Bertozzi ligation phosphine derivatives of fluorescent probes suitable for single-molecule fluorescence spectroscopy.. Methods in enzymology. 472:19-30. Abstract
We describe the synthesis of phosphine derivatives of three fluorescent probes that have a brightness and photostability suitable for single-molecule fluorescence spectroscopy and microscopy: Alexa488, Cy3B, and Alexa647. In addition, we describe procedures for use of these reagents in azide-specific, bioorthogonal labeling through Staudinger-Bertozzi ligation, as well as procedures for the quantitation of labeling specificity and labeling efficiency. The reagents and procedures of this report enable chemoselective, site-selective labeling of azide-containing biomolecules for single-molecule fluorescence spectroscopy and microscopy.
Chen, S, Gunasekera A, Zhang X, Kunkel TA, Ebright RH, Berman HM.  2001.  Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: alteration of DNA binding specificity through alteration of DNA kinking.. Journal of molecular biology. 314(1):75-82. Abstract
The catabolite activator protein (CAP) sharply bends DNA in the CAP-DNA complex, introducing a DNA kink, with a roll angle of approximately 40 degrees and a twist angle of approximately 20 degrees, between positions 6 and 7 of the DNA half-site, 5'-A(1)A(2)A(3)T(4)G(5)T(6)G(7)A(8)T(9)C(10)T(11)-3' ("primary kink"). CAP recognizes the base-pair immediately 5' to the primary-kink site, T:A(6), through an "indirect-readout" mechanism involving sequence effects on the energetics of primary-kink formation. CAP recognizes the base-pair immediately 3' to the primary-kink site, G:C(7), through a "direct-readout" mechanism involving formation of a hydrogen bond between Glu181 of CAP and G:C(7). Here, we report that substitution of the carboxylate side-chain of Glu181 of CAP by the one-methylene-group-shorter carboxylate side-chain of Asp changes DNA binding specificity at position 6 of the DNA half site, changing specificity for T:A(6) to specificity for C:G(6), and we report a crystallographic analysis defining the structural basis of the change in specificity. The Glu181-->Asp substitution eliminates the primary kink and thus eliminates indirect-readout-based specificity for T:A(6). The Glu181-->Asp substitution does not eliminate hydrogen-bond formation with G:C(7), and thus does not eliminate direct-readout-based specificity for G:C(7).
Chen, Y, Ebright RH.  1993.  Phenyl-azide-mediated photocrosslinking analysis of Cro-DNA interaction.. Journal of molecular biology. 230(2):453-60. Abstract
Using phenyl-azide-mediated photocrosslinking, we show that the alpha carbon of amino acid 2 of the helix-turn-helix motif of bacteriophage lambda Cro is within 12 A of the bottom-strand nucleotides at positions 2 and 3 of the DNA half site in the Cro-DNA complex in solution. This result is in excellent agreement with the crystallographic structure of the Cro-DNA complex. The results of phenyl-azide-mediated photocrosslinking analysis of Cro-DNA interaction, together with the previously reported results of phenyl-azide-mediated photocrosslinking analysis of CAP-DNA interaction, establish that phenyl-azide-mediated photocrosslinking is generalizable and provide information regarding the structural requirements for phenyl-azide-mediated photocrosslinking. Comparison of the results of phenyl-azide-mediated photocrosslinking to the results of EDTA: iron-mediated affinity cleaving indicates that phenyl-azide-mediated photocrosslinking yields superior resolution.
Chen, H, Tang H, Ebright RH.  2003.  Functional interaction between RNA polymerase alpha subunit C-terminal domain and sigma70 in UP-element- and activator-dependent transcription.. Molecular cell. 11(6):1621-33. Abstract
We show that the Escherichia coli RNA polymerase (RNAP) alpha subunit C-terminal domain (alphaCTD) functionally interacts with sigma(70) at a subset of UP-element- and activator-dependent promoters, we define the determinants of alphaCTD and sigma(70) required for the interaction, and we present a structural model for the interaction. The alphaCTD-sigma(70) interaction spans the upstream promoter and core promoter, thereby linking recognition of UP-elements and activators in the upstream promoter with recognition of the -35 element in the core promoter. We propose that the alphaCTD-sigma(70) interaction permits UP-elements and activators not only to "recruit" RNAP through direct interaction with alphaCTD, but also to "remodel" RNAP-core-promoter interaction through indirect, alphaCTD-bridged interactions with sigma(70).
Chen, Y, Ebright YW, Ebright RH.  1994.  Identification of the target of a transcription activator protein by protein-protein photocrosslinking.. Science (New York, N.Y.). 265(5168):90-2. Abstract
Here it is shown, with the use of protein-protein photocrosslinking, that the carboxyl-terminal region of the alpha subunit of RNA polymerase (RNAP) is in direct physical proximity to the activating region of the catabolite gene activator protein (CAP) in the ternary complex of the lac promoter, RNAP, and CAP. These results strongly support the proposal that transcription activation by CAP involves protein-protein contact between the carboxyl-terminal region of the alpha subunit and the activating region of CAP.
Chen, S, Vojtechovsky J, Parkinson GN, Ebright RH, Berman HM.  2001.  Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: DNA binding specificity based on energetics of DNA kinking.. Journal of molecular biology. 314(1):63-74. Abstract
The catabolite activator protein (CAP) makes no direct contact with the consensus base-pair T:A at position 6 of the DNA half-site 5'-A(1)A(2)A(3)T(4)G(5)T(6)G(7)A(8)T(9)C(10)T(11)-3' but, nevertheless, exhibits strong specificity for T:A at position 6. Binding of CAP results in formation of a sharp DNA kink, with a roll angle of approximately 40 degrees and a twist angle of approximately 20 degrees, between positions 6 and 7 of the DNA half-site. The consensus base-pair T:A at position 6 and the consensus base-pair G:C at position 7 form a T:A/G:C step, which is known to be associated with DNA flexibility. It has been proposed that specificity for T:A at position 6 is a consequence of formation of the DNA kink between positions 6 and 7, and of effects of the T:A(6)/G:C(7) step on the geometry of DNA kinking, or the energetics of DNA kinking. In this work, we determine crystallographic structures of CAP-DNA complexes having the consensus base-pair T:A at position 6 or the non-consensus base-pair C:G at position 6. We show that complexes containing T:A or C:G at position 6 exhibit similar overall DNA bend angles and local geometries of DNA kinking. We infer that indirect readout in this system does not involve differences in the geometry of DNA kinking but, rather, solely differences in the energetics of DNA kinking. We further infer that the main determinant of DNA conformation in this system is protein-DNA interaction, and not DNA sequence.
Degen, D, Feng Y, Zhang Y, Ebright KY, Ebright YW, Gigliotti M, Vahedian-Movahed H, Mandal S, Talaue M, Connell N et al..  2014.  Transcription inhibition by the depsipeptide antibiotic salinamide A.. eLife. 3:e02451. Abstract
We report that bacterial RNA polymerase (RNAP) is the functional cellular target of the depsipeptide antibiotic salinamide A (Sal), and we report that Sal inhibits RNAP through a novel binding site and mechanism. We show that Sal inhibits RNA synthesis in cells and that mutations that confer Sal-resistance map to RNAP genes. We show that Sal interacts with the RNAP active-center 'bridge-helix cap,' comprising the 'bridge-helix N-terminal hinge,' 'F-loop,' and 'link region.' We show that Sal inhibits nucleotide addition in transcription initiation and elongation. We present a crystal structure that defines interactions between Sal and RNAP and effects of Sal on RNAP conformation. We propose that Sal functions by binding to the RNAP bridge-helix cap and preventing conformational changes of the bridge-helix N-terminal hinge necessary for nucleotide addition. The results provide a target for antibacterial drug discovery and a reagent to probe conformation and function of the bridge-helix N-terminal hinge.
Dong, Q, Blatter EE, Ebright YW, Bister K, Ebright RH.  1994.  Identification of amino acid-base contacts in the Myc-DNA complex by site-specific bromouracil mediated photocrosslinking.. The EMBO journal. 13(1):200-4. Abstract
Myc binds to a 6 bp 2-fold symmetric DNA site: 5'-C-3A-2C-1G+1T+2G+3-3'. Using site-specific 5-bromouracil mediated photocrosslinking, we show that His336 of Myc contacts, or is close to, the thymine 5-methyl group at 2-fold symmetry-related positions -2 and +2 of the DNA site in the Myc-DNA complex. Our results strongly suggest that homologous amino acids of Myc and Max make equivalent contacts in the respective protein-DNA complexes.
Dong, Q, Ebright RH.  1992.  DNA binding specificity and sequence of Xanthomonas campestris catabolite gene activator protein-like protein.. Journal of bacteriology. 174(16):5457-61. Abstract
The Xanthomonas campestris catabolite gene activator protein-like protein (CLP) can substitute for the Escherichia coli catabolite gene activator protein (CAP) in transcription activation at the lac promoter (V. de Crecy-Lagard, P. Glaser, P. Lejeune, O. Sismeiro, C. Barber, M. Daniels, and A. Danchin, J. Bacteriol. 172:5877-5883, 1990). We show that CLP has the same DNA binding specificity as CAP at positions 5, 6, and 7 of the DNA half site. In addition, we show that the amino acids at positions 1 and 2 of the recognition helix of CLP are identical to the amino acids at positions 1 and 2 of the recognition helix of CAP:i.e., Arg at position 1 and Glu at position 2.