Publications

1996
Dumoulin, P, Ebright RH, Knegtel R, Kaptein R, Granger-Schnarr M, Schnarr M.  1996.  Structure of the LexA repressor-DNA complex probed by affinity cleavage and affinity photo-cross-linking.. Biochemistry. 35(14):4279-86. Abstract
The structure of the complex of full-length Escherichia coli LexA repressor with a consensus operator DNA fragment has been probed by affinity photo-cross-linking and affinity cleavage. These methods allow the determination of approximate intermolecular distances between a given protein residue and a base or sugar moiety within the operator. In a first step unique cysteine residues were introduced in positions 7, 28, 38, or 52 of the protein. In all four cases, the original amino acid was an arginine. The four amino acids in these positions were expected to be situated on the surface of LexA interacting with DNA, as inferred from the structure of the LexA DNA binding domain [Fogh et al. (1994) EMBO J. 13, 3936-3944]. In a second step, these unique cysteine side chains of the purified proteins were chemically modified either with 4-azidophenacyl bromide or with S-(2-pyridylthio)cysteaminyl-EDTA. The first set of derivatives gives rise to UV-induced cross-linking which may be revealed by alkali/heat treatment; the second leads to direct DNA cleavage in the proximity of the derivatized amino acid. To reduce hydroxyl radical diffusion, the EDTA-iron cleavage reactions were done in the presence of high amounts of glycerol. The results indicate that amino acids 7 and 52 are near nucleotide pairs 8-12 of the operator and that amino acids 28 and 36 of LexA are near nucleotide pairs 5-8 of the operator. The results unambiguously define the orientation of the LexA DNA binding domain relative to the operator and provide support for the model of the LexA-operator complex proposed by Knegtel et al. [(1995) Proteins 21, 226-236]. Ethylation interference experiments further suggest that Arg-7 contacts the phosphate group between nucleotides 8 and 9 as predicted by the model.
Tang, H, Kim Y, Severinov K, Goldfarb A, Ebright RH.  1996.  Escherichia coli RNA polymerase holoenzyme: rapid reconstitution from recombinant alpha, beta, beta', and sigma subunits.. Methods in enzymology. 273:130-4.
Heyduk, T, Ma Y, Tang H, Ebright RH.  1996.  Fluorescence anisotropy: rapid, quantitative assay for protein-DNA and protein-protein interaction.. Methods in enzymology. 274:492-503.
1995
Tang, H, Severinov K, Goldfarb A, Ebright RH.  1995.  Rapid RNA polymerase genetics: one-day, no-column preparation of reconstituted recombinant Escherichia coli RNA polymerase.. Proceedings of the National Academy of Sciences of the United States of America. 92(11):4902-6. Abstract
We present a simple, rapid procedure for reconstitution of Escherichia coli RNA polymerase holoenzyme (RNAP) from individual recombinant alpha, beta, beta', and sigma 70 subunits. Hexahistidine-tagged recombinant alpha subunit purified by batch-mode metal-ion-affinity chromatography is incubated with crude recombinant beta, beta', and sigma 70 subunits from inclusion bodies, and the resulting reconstituted recombinant RNAP is purified by batch-mode metal-ion-affinity chromatography. RNAP prepared by this procedure is indistinguishable from RNAP prepared by conventional methods with respect to subunit stoichiometry, alpha-DNA interaction, catabolite gene activator protein (CAP)-independent transcription, and CAP-dependent transcription. Experiments with alpha (1-235), an alpha subunit C-terminal deletion mutant, establish that the procedure is suitable for biochemical screening of subunit lethal mutants.
Ebright, RH, Busby S.  1995.  The Escherichia coli RNA polymerase alpha subunit: structure and function.. Current opinion in genetics & development. 5(2):197-203. Abstract
Recent work has established that the Escherichia coli RNA polymerase alpha subunit consists of an amino-terminal domain containing determinants for interaction with the remainder of RNA polymerase, a carboxy-terminal domain containing determinants for interaction with DNA and interaction with transcriptional activator proteins, and a 13-36 amino acid unstructured and/or flexible linker. These findings suggest a simple, integrated model for the mechanism of involvement of alpha in promoter recognition and transcriptional activation.
Merkel, TJ, Dahl JL, Ebright RH, Kadner RJ.  1995.  Transcription activation at the Escherichia coli uhpT promoter by the catabolite gene activator protein.. Journal of bacteriology. 177(7):1712-8. Abstract
Transport and utilization of sugar phosphates in Escherichia coli depend on the transport protein encoded by the uhpT gene. Transmembrane induction of uhpT expression by external glucose 6-phosphate is positively regulated by the promoter-specific activator protein UhpA and the global regulator catabolite gene activator protein (CAP). Activation by UhpA requires a promoter element centered at -64 bp, relative to the start of transcription, and activation by CAP requires a DNA site centered at position -103.5. This DNA site binds the cyclic AMP-CAP complex in vitro, and its deletion from the promoter reduces transcription activity to 7 to 9% of the wild-type level. Ten uhpT promoter derivatives with altered spacing between the DNA site for CAP and the remainder of the promoter were constructed. Their transcription activities indicated that the action of CAP at this promoter is dependent on proper helical phasing of promoter elements, with CAP binding on the same face of the helix as RNA polymerase does. Five CAP mutants defective in transcription activation at class I and class II CAP-dependent promoters but not defective in DNA binding or DNA bending (positive control mutants) were tested for the ability to activate transcription. These CAPpc mutants exhibited little or no defect in transcription activation at uhpT, indicating that CAP action at uhpTp involves a different mechanism than that which is used for its action at other classes of CAP-dependent promoters.
1994
Blatter, EE, Ross W, Tang H, Gourse RL, Ebright RH.  1994.  Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding.. Cell. 78(5):889-96. Abstract
Using limited proteolysis, we show that the Escherichia coli RNA polymerase alpha subunit consists of an N-terminal domain comprised of amino acids 8-241, a C-terminal domain comprised of amino acids 249-329, and an unstructured and/or flexible interdomain linker. We have carried out a detailed structural and functional analysis of an 85 amino acid proteolytic fragment corresponding to the C-terminal domain (alpha CTD-2). Our results establish that alpha CTD-2 has a defined secondary structure (approximately 40% alpha helix, approximately 0% beta sheet). Our results further establish that alpha CTD-2 is a dimer and that alpha CTD-2 exhibits sequence-specific DNA binding activity. Our results suggest a model for the mechanism of involvement of alpha in transcription activation by promoter upstream elements and upstream-binding activator proteins.
Zhou, Y, Pendergrast PS, Bell A, Williams R, Busby S, Ebright RH.  1994.  The functional subunit of a dimeric transcription activator protein depends on promoter architecture.. The EMBO journal. 13(19):4549-57. Abstract
In Class I CAP-dependent promoters, the DNA site for CAP is located upstream of the DNA site for RNA polymerase. In Class II CAP-dependent promoters, the DNA site for CAP overlaps the DNA site for RNA polymerase, replacing the -35 site. We have used an 'oriented heterodimers' approach to identify the functional subunit of CAP at two Class I promoters having different distances between the DNA sites for CAP and RNA polymerase [CC(-61.5) and CC(-72.5)] and at one Class II promoter [CC(-41.5)]. Our results indicate that transcription activation at Class I promoters, irrespective of the distance between the DNA sites for CAP and RNA polymerase, requires the activating region of the promoter-proximal subunit of CAP. In striking contrast, our results indicate that transcription activation at Class II promoters requires the activating region of the promoter-distal subunit of CAP.
Niu, W, Zhou Y, Dong Q, Ebright YW, Ebright RH.  1994.  Characterization of the activating region of Escherichia coli catabolite gene activator protein (CAP). I. Saturation and alanine-scanning mutagenesis.. Journal of molecular biology. 243(4):595-602. Abstract
It has been proposed that the surface loop consisting of amino acid residues 152 to 166 of the catabolite gene activator protein (CAP) of Escherichia coli makes direct protein-protein contact with RNA polymerase at the lac promoter. In this work, we have used targeted saturation mutagenesis of codons 152 to 166 of the gene encoding CAP, followed by a screen, to isolate more than 200 independent mutants of CAP defective in transcription activation but not defective in DNA binding. All isolated single-substitution mutants map to just eight amino acid residues; 156, 157, 158, 159, 160, 162, 163 and 164. We propose that these residues define the full extent of the epitope on CAP for the proposed CAP-RNA polymerase interaction. In addition, we have constructed alanine substitutions at each position from residue 152 to 166 of CAP, and we have analyzed the effects on transcription activation at the lac promoter and on DNA binding. Alanine substitution of Thr158 results in an approximately eightfold specific defect in transcription activation. In contrast, alanine substitution of no other residue tested results in a more than twofold specific defect in transcription activation. We conclude that, for Thr158, side-chain atoms beyond C beta are essential for transcription activation at the lac promoter, and we propose that Thr158 OH7 gamma makes direct contact with RNA polymerase in the ternary complex of lac promoter, CAP and RNA polymerase. We conclude further that for no residue other than Thr158 are side-chain atoms beyond C beta essential for transcription activation at the lac promoter.
Zhou, Y, Merkel TJ, Ebright RH.  1994.  Characterization of the activating region of Escherichia coli catabolite gene activator protein (CAP). II. Role at Class I and class II CAP-dependent promoters.. Journal of molecular biology. 243(4):603-10. Abstract
CAP-dependent promoters can be divided into classes based on the position of the DNA site for CAP. In class I CAP-dependent promoters, the DNA site for CAP is located upstream of the DNA site for polymerase; the DNA site for CAP can be located at various distances from the transcription start point, provided that the DNS site for CAP and the DNA site for RNA polymerase are on the same face of the DNA helix. In class II CAP-dependent promoters, the DNA site for CAP overlaps the DNA site for RNA polymerase, replacing the -35 determinants for binding of RNA polymerase. In previous work, we have shown that a surface loop consisting of amino acid residues 152 to 166 of CAP is essential for transcription activation at the best-characterized class I CAP-dependent promoter, the lac promoter, and we proposed that this surface loop makes direct protein-protein contact with RNA polymerase in the ternary complex of lac promoter, CAP, and RNA polymerase. Here, we show that the surface loop consisting of amino acid residues 152 to 166 is essential for transcription activation at other class I CAP-dependent promoters and at a class II CAP-dependent promoter. We show further that the effects of alanine substitutions of residues 152 to 166 are qualitatively identical at the lac promoter and other class I CAP-dependent promoters, but are different at a class II CAP-dependent promoter. We propose that the surface loop consisting of residues 152 to 166 makes identical molecular interactions in transcription activation at all class I CAP-dependent promoters, irrespective of distance between the DNA site for CAP and the transcription start point, but makes a different set of molecular interactions in transcription activation at class II CAP-dependent promoters.
Chen, Y, Ebright YW, Ebright RH.  1994.  Identification of the target of a transcription activator protein by protein-protein photocrosslinking.. Science (New York, N.Y.). 265(5168):90-2. Abstract
Here it is shown, with the use of protein-protein photocrosslinking, that the carboxyl-terminal region of the alpha subunit of RNA polymerase (RNAP) is in direct physical proximity to the activating region of the catabolite gene activator protein (CAP) in the ternary complex of the lac promoter, RNAP, and CAP. These results strongly support the proposal that transcription activation by CAP involves protein-protein contact between the carboxyl-terminal region of the alpha subunit and the activating region of CAP.
Shang, Z, Ebright YW, Iler N, Pendergrast PS, Echelard Y, McMahon AP, Ebright RH, Abate C.  1994.  DNA affinity cleaving analysis of homeodomain-DNA interaction: identification of homeodomain consensus sites in genomic DNA.. Proceedings of the National Academy of Sciences of the United States of America. 91(1):118-22. Abstract
We have incorporated the DNA-cleaving moiety o-phenanthroline-copper at amino acid 10 of the Msx-1 homeodomain, and we have analyzed site-specific DNA cleavage by the resulting Msx-1 derivative. We show that amino acid 10 of the Msx-1 homeodomain is close to the 5' end of the consensus DNA site 5'-(C/G)TAATTG-3' in the Msx-1-DNA complex. Our results indicate that the orientation of the Msx-1 homeodomain relative to DNA is analogous to the orientation of the engrailed and Antennapedia homeodomains. We show further that DNA affinity cleaving permits identification of consensus DNA sites for Msx-1 in kilobase DNA substrates. The specificity of the approach enabled us to identify an Msx-1 consensus DNA site within the transcriptional control region of the developmental regulatory gene Wnt-1. We propose that incorporation of o-phenanthroline-copper at amino acid 10 of a homeodomain may provide a generalizable strategy to determine the orientation of a homeodomain relative to DNA and to identify homeodomain consensus DNA sites in genomic DNA.
Dong, Q, Blatter EE, Ebright YW, Bister K, Ebright RH.  1994.  Identification of amino acid-base contacts in the Myc-DNA complex by site-specific bromouracil mediated photocrosslinking.. The EMBO journal. 13(1):200-4. Abstract
Myc binds to a 6 bp 2-fold symmetric DNA site: 5'-C-3A-2C-1G+1T+2G+3-3'. Using site-specific 5-bromouracil mediated photocrosslinking, we show that His336 of Myc contacts, or is close to, the thymine 5-methyl group at 2-fold symmetry-related positions -2 and +2 of the DNA site in the Myc-DNA complex. Our results strongly suggest that homologous amino acids of Myc and Max make equivalent contacts in the respective protein-DNA complexes.
Tang, H, Severinov K, Goldfarb A, Fenyo D, Chait B, Ebright RH.  1994.  Location, structure, and function of the target of a transcriptional activator protein.. Genes & development. 8(24):3058-67. Abstract
We have isolated and characterized single-amino-acid substitution mutants of RNA polymerase alpha subunit defective in CAP-dependent transcription at the lac promoter but not defective in CAP-independent transcription. Our results establish that (1) amino acids 258-265 of alpha constitute an "activation target" essential for CAP-dependent transcription at the lac promoter but not essential for CAP-independent transcription, (2) amino acid 261 is the most critical amino acid of the activation target, (3) amino acid 261 is distinct from the determinants for alpha-DNA interaction, and (4) the activation target may fold as a surface amphipathic alpha-helix. We propose a model for transcriptional activation at the lac promoter that integrates these and other recent results regarding transcriptional activation and RNA polymerase structure and function.
Pendergrast, PS, Ebright YW, Ebright RH.  1994.  High-specificity DNA cleavage agent: design and application to kilobase and megabase DNA substrates.. Science (New York, N.Y.). 265(5174):959-62. Abstract
Strategies to cleave double-stranded DNA at specific DNA sites longer than those of restriction endonucleases (longer than 8 base pairs) have applications in chromosome mapping, chromosome cloning, and chromosome sequencing--provided that the strategies yield high DNA-cleavage efficiency and high DNA-cleavage specificity. In this report, the DNA-cleaving moiety copper:o-phenanthroline was attached to the sequence-specific DNA binding protein catabolite activator protein (CAP) at an amino acid that, because of a difference in DNA bending, is close to DNA in the specific CAP-DNA complex but is not close to DNA in the nonspecific CAP-DNA complex. The resulting CAP derivative, OP26CAP, cleaved kilobase and megabase DNA substrates at a 22-base pair consensus DNA site with high efficiency and exhibited no detectable nonspecific DNA-cleavage activity.
1993
Ebright, YW, Chen Y, Ludescher RD, Ebright RH.  1993.  N-(iodoacetyl)-p-phenylenediamine-EDTA: a reagent for high-efficiency incorporation of an EDTA-metal complex at a rationally selected site within a protein.. Bioconjugate chemistry. 4(3):219-25. Abstract
We have developed a highly efficient procedure to incorporate an EDTA:metal complex at a rationally selected site within a full-length protein. Our procedure has two steps: In step one, we use site-directed mutagenesis to introduce a unique solvent-accessible cysteine residue at the site of interest. In step two, we derivatized the resulting protein with N-(iodoacetyl)-p-phenylenediamine-EDTA:metal, a novel haloacetyl derivative of EDTA:metal. We have used this procedure to incorporate each of three EDTA:metal complexes at amino acid 2 of the helix-turn-helix motif of the sequence-specific DNA binding protein Cro: a radioactive and nucleolytic EDTA:metal complex (EDTA:55Fe), a radioactive EDTA:metal complex (EDTA:63Ni), and a fluorescent and heavy-atom EDTA:metal complex (EDTA:Eu). Incorporation of EDTA:metal was highly efficient (> 80% for EDTA:55Fe and EDTA:63Ni; 60% for EDTA:Eu) and highly site-specific (> 99%). We have analyzed DNA affinity cleaving by the Cro derivative having EDTA:55Fe at amino acid 2 of the helix-turn-helix motif. The Cro derivative cleaves DNA at base pairs -4 to 6 of the DNA half site in the protein-DNA complex, indicating that amino acid 2 of the helix-turn-helix motif of Cro is close to base pairs -4 to 6 of the DNA half site in the Cro-DNA complex in solution.(ABSTRACT TRUNCATED AT 250 WORDS)
Ebright, RH.  1993.  Transcription activation at Class I CAP-dependent promoters.. Molecular microbiology. 8(5):797-802. Abstract
Catabolite gene activator protein (CAP)-dependent promoters can be grouped into three classes, based on the requirement for transcription activation and the position of the DNA site for CAP. Class I CAP-dependent promoters require only CAP for transcription activation and have the DNA site for CAP located upstream of the DNA site for RNA polymerase. Amino acids 156 to 162 of the promoter-proximal subunit of CAP are essential for transcription activation at Class I CAP-dependent promoters, but are not essential for DNA binding, and are not essential for DNA bending. In the structure of the CAP-DNA complex, these amino acids are located in a surface loop and form a cluster on the surface of the CAP-DNA complex. Amino acids 261, 265, and 270 of the alpha subunit of RNA polymerase are essential for response to transcription activation by CAP at Class I CAP-dependent promoters. Several lines of evidence indicate that transcription activation at Class I CAP-dependent promoters requires a direct protein-protein contact between amino acids 156 to 162 of the promoter-proximal subunit of CAP and a molecule of RNA polymerase bound adjacent to CAP on the same face of the DNA helix. It is a strong possibility that this direct protein-protein contact involves amino acids 261 and 265 of the alpha subunit of RNA polymerase.
Chen, Y, Ebright RH.  1993.  Phenyl-azide-mediated photocrosslinking analysis of Cro-DNA interaction.. Journal of molecular biology. 230(2):453-60. Abstract
Using phenyl-azide-mediated photocrosslinking, we show that the alpha carbon of amino acid 2 of the helix-turn-helix motif of bacteriophage lambda Cro is within 12 A of the bottom-strand nucleotides at positions 2 and 3 of the DNA half site in the Cro-DNA complex in solution. This result is in excellent agreement with the crystallographic structure of the Cro-DNA complex. The results of phenyl-azide-mediated photocrosslinking analysis of Cro-DNA interaction, together with the previously reported results of phenyl-azide-mediated photocrosslinking analysis of CAP-DNA interaction, establish that phenyl-azide-mediated photocrosslinking is generalizable and provide information regarding the structural requirements for phenyl-azide-mediated photocrosslinking. Comparison of the results of phenyl-azide-mediated photocrosslinking to the results of EDTA: iron-mediated affinity cleaving indicates that phenyl-azide-mediated photocrosslinking yields superior resolution.
Zhou, Y, Zhang X, Ebright RH.  1993.  Identification of the activating region of catabolite gene activator protein (CAP): isolation and characterization of mutants of CAP specifically defective in transcription activation.. Proceedings of the National Academy of Sciences of the United States of America. 90(13):6081-5. Abstract
We have isolated 21 mutants of catabolite gene activator protein (CAP) defective in transcription activation at the lac promoter but not defective in DNA binding. The amino acid substitutions in the mutants map to a single region of CAP: amino acids 156-162. As assessed in vitro, the substituted CAP variants are nearly completely unable to activate transcription at the lac promoter but bind to DNA with the same affinity and bend DNA to the same extent as wild-type CAP. Our results establish that amino acids 156-162 are critical for transcription activation at the lac promoter but not for DNA binding and DNA bending. In the structure of CAP, amino acids 156-162 are part of a surface loop. We propose that this surface loop makes a direct protein-protein contact with RNA polymerase at the lac promoter.
Heyduk, T, Lee JC, Ebright YW, Blatter EE, Zhou Y, Ebright RH.  1993.  CAP interacts with RNA polymerase in solution in the absence of promoter DNA.. Nature. 364(6437):548-9. Abstract
Protein-protein interactions between transcription activator proteins and RNA polymerase or basal transcription factors have been suggested to be important for transcription activation. Interactions between catabolite gene activator protein (CAP) and RNA polymerase have been proposed based on face-of-helix-dependent transcription activation by CAP and based on face-of-helix-dependent cooperative binding of CAP and RNA polymerase to promoter DNA. Mutants of CAP specifically defective in transcription activation have been isolated (mutants defective in transcription activation, but not defective in DNA binding and DNA bending). All such mutants contain amino-acid substitutions within a surface loop consisting of amino acids 152 to 166 of CAP. Here we use the thermodynamically rigorous technique of fluorescence polarization to show that CAP interacts with RNA polymerase in solution in the absence of promoter DNA (KD,app = 2.8 x 10(-7) M), whereas [Ala158]CAP, a mutant of CAP specifically defective in transcription activation, does not.
Zhou, Y, Busby S, Ebright RH.  1993.  Identification of the functional subunit of a dimeric transcription activator protein by use of oriented heterodimers.. Cell. 73(2):375-9. Abstract
We have constructed heterodimers consisting of two subunits: one CAP subunit that has a nonfunctional activating region but wild-type DNA binding specificity, and one CAP subunit that has a functional activating region but non-wild-type DNA binding specificity. We have oriented the heterodimers on lac promoter DNA by use of promoter derivatives that have DNA sites for CAP consisting of one wild-type half site and one non-wild-type half site, and we have analyzed the abilities of the oriented heterodimers to activate transcription. Our results indicate that transcription. Our results indicate that transcription activation requires the activating region of only one subunit of CAP: the promoter-proximal subunit. The oriented heterodimers method of this report should be generalizable to other dimeric transcription activator proteins.
1992
Blatter, EE, Ebright YW, Ebright RH.  1992.  Identification of an amino acid-base contact in the GCN4-DNA complex by bromouracil-mediated photocrosslinking.. Nature. 359(6396):650-2. Abstract
The bZIP DNA-binding proteins are characterized by a 50-amino-acid DNA binding and dimerization motif, consisting of a highly basic DNA-binding region ('b') followed by a leucine zipper dimerization region ('ZIP'). The best characterized bZIP DNA-binding protein is GCN4, a yeast transcriptional activator. GCN4 binds to a 9-base-pair two-fold-symmetric DNA site, 5'-A-4T-3G-2A-1C0T+1C+2A+3T+4-3' (refs 7-10). A detailed model known as the 'induced helical fork' model has been proposed for the structure of the GCN4-DNA complex. Using a site-specific bromouracil-mediated photocrosslinking method, we show here that the alanine at position 238 of GCN4 contacts, or is close to, the thymine 5-methyl of A.T at position +3 of the DNA site in the GCN4-DNA complex. Our results strongly support the induced helical fork model. Our site-specific bromouracil-mediated photocrosslinking method requires no prior information regarding the structure of the protein or the structure of the protein-DNA complex and should be generalizable to DNA-binding proteins that interact with the DNA major groove.
Ebright, YW, Chen Y, Pendergrast PS, Ebright RH.  1992.  Incorporation of an EDTA-metal complex at a rationally selected site within a protein: application to EDTA-iron DNA affinity cleaving with catabolite gene activator protein (CAP) and Cro.. Biochemistry. 31(44):10664-70. Abstract
We have developed a simple procedure to incorporate an EDTA-metal complex at a rationally selected site within a full-length protein. Our procedure has two steps: In step 1, we use site-directed mutagenesis to introduce a unique solvent-accessible cysteine residue at the site of interest. In step 2, we derivatize the resulting protein with S-(2-pyridylthio)cysteaminyl-EDTA-metal, a novel aromatic disulfide derivative of EDTA-metal. We have used this procedure to incorporate an EDTA-iron complex at amino acid 2 of the helix-turn-helix motif of each of two helix-turn-helix motif sequence-specific DNA binding proteins, catabolite gene activator protein (CAP) and Cro, and we have analyzed EDTA-iron-mediated DNA affinity cleavage by the resulting protein derivatives. The CAP derivative cleaves DNA at base pair 2 of the DNA half-site in the protein-DNA complex, and the Cro derivative cleaves DNA at base pairs -3 to 5 of the DNA half-site in the protein-DNA complex. We infer that amino acid 2 of the helix-turn-helix motif of CAP is close to base pair 2 of the DNA half-site in the CAP-DNA complex in solution and that amino acid 2 of the helix-turn-helix motif of Cro is close to base pairs -3 to 5 of the DNA half-site in the Cro-DNA complex in solution.(ABSTRACT TRUNCATED AT 250 WORDS)
Pendergrast, PS, Chen Y, Ebright YW, Ebright RH.  1992.  Determination of the orientation of a DNA binding motif in a protein-DNA complex by photocrosslinking.. Proceedings of the National Academy of Sciences of the United States of America. 89(21):10287-91. Abstract
We have developed a straightforward biochemical method to determine the orientation of the DNA binding motif of a sequence-specific DNA binding protein relative to the DNA site in the protein-DNA complex. The method involves incorporation of a photoactivatable crosslinking agent at a single site within the DNA binding motif of the sequence-specific DNA binding protein, formation of the derivatized protein-DNA complex, UV-irradiation of the derivatized protein-DNA complex, and determination of the nucleotide(s) at which crosslinking occurs. We have applied the method to catabolite gene activator protein (CAP). We have constructed and analyzed two derivatives of CAP: one having a phenyl azide photoactivatable crosslinking agent at amino acid 2 of the helix-turn-helix motif of CAP, and one having a phenyl azide photoactivatable crosslinking agent at amino acid 10 of the helix-turn-helix motif of CAP. The results indicate that amino acid 2 of the helix-turn-helix motif is close to the top-strand nucleotides of base pairs 3 and 4 of the DNA half site in the CAP-DNA complex, and that amino acid 10 of the helix-turn-helix motif is close to the bottom-strand nucleotide of base pair 10 of the DNA half site in the CAP-DNA complex. The results define unambiguously the orientation of the helix-turn-helix motif relative to the DNA half site in the CAP-DNA complex. Comparison of the results to the crystallographic structure of the CAP-DNA complex [Schultz, S., Shields, S. & Steitz, T. (1991) Science 253, 1001-1007] indicates that the method provides accurate, high-resolution proximity and orientation information.