Publications

2014
Dooner, HK, He L.  2014.  Polarized gene conversion at the bz locus of maize.. Proc Natl Acad Sci USA. 111(38):13918-23. Abstract
Nucleotide diversity is greater in maize than in most organisms studied to date, so allelic pairs in a hybrid tend to be highly polymorphic. Most recombination events between such pairs of maize polymorphic alleles are crossovers. However, intragenic recombination events not associated with flanking marker exchange, corresponding to noncrossover gene conversions, predominate between alleles derived from the same progenitor. In these dimorphic heterozygotes, the two alleles differ only at the two mutant sites between which recombination is being measured. To investigate whether gene conversion at the bz locus is polarized, two large diallel crossing matrices involving mutant sites spread across the bz gene were performed and more than 2,500 intragenic recombinants were scored. In both diallels, around 90% of recombinants could be accounted for by gene conversion. Furthermore, conversion exhibited a striking polarity, with sites located within 150 bp of the start and stop codons converting more frequently than sites located in the middle of the gene. The implications of these findings are discussed with reference to recent data from genome-wide studies in other plants.
Hawkins, JS, Delgado V, Feng L, Carlise M, Dooner HK, Bennetzen JL.  2014.  Variation in allelic expression associated with a recombination hotspot in Zea mays.. The Plant Journal, DOI: 10.1111/tpj.12537. Abstract
Gene expression is a complex process, requiring precise spatial and temporal regulation of transcription factor activity; however, modifications of individual cis- and trans-acting modules can be molded by natural selection to create a sizeable number of novel phenotypes. Results from decades of research indicate that developmental and phenotypic divergence among eukaryotic organisms is driven primarily by variation in levels of gene expression that are dictated by mutations either in structural or regulatory regions of genes. The relative contributions and interplay of cis- and trans-acting regulatory factors to this evolutionary process, however, remain poorly understood. Analysis of 8 genes in the Bz1-Sh1 interval of maize indicates significant allele-specific expression biases in at least one tissue for all genes, ranging from 1.3-fold to 36-fold. All detected effects were cis-regulatory in nature, although genetic background may also influence the level of expression bias and tissue specificity for some allelic combinations. Most allelic pairs exhibited the same direction and approximate intensity of bias across all four tissues; however, a subset of allelic pairs show alternating dominance across different tissue types or variation in the degree of bias in different tissues. In addition, the genes showing the most striking levels of allelic bias co-localize with a previously described recombination hotspot in this region, suggesting a naturally occurring genetic mechanism for creating regulatory variability for a subset of plant genes that may ultimately lead to evolutionary diversification.
Xiong, W, He L, Lai J, Dooner HK, Du C.  2014.  HelitronScanner uncovers a large overlooked cache of Helitron transposons in many genomes.. Proc. Natl. Acad. Sci. USA. DOI 10.1073/pnas.1410068111 AbstractWebsite
Transposons make up the bulk of eukaryotic genomes, but are difficult to annotate because they evolve rapidly. Most of the unannotated portion of sequenced genomes is probably made up of various divergent transposons that have yet to be categorized. Helitrons are unusual rolling circle eukaryotic transposons that often capture gene sequences, making them of considerable evolutionary importance. Unlike other DNA transposons, Helitrons do not end in inverted repeats or create target site duplications, so they are particularly challenging to identify. Here we present HelitronScanner, a two-layered local combinational variable (LCV) tool for generalized Helitron identification that represents a major improvement over previous identification programs based on DNA sequence or structure. HelitronScanner identified 64,654 Helitrons from a wide range of plant genomes in a highly automated way. We tested HelitronScanner’s predictive ability in maize, a species with highly heterogeneous Helitron elements. LCV scores for the 5’ and 3’ termini of the predicted Helitrons provide a primary confidence level and element copy number provides a secondary one. Newly identified Helitrons were validated by polymerase chain reaction (PCR) assays or by in-silico comparative analysis of insertion site polymorphism among multiple accessions. Many new Helitrons were identified in model species, such as maize, rice, and Arabidopsis, and in a variety of organisms where Helitrons had not been reported previously, leading to a major upward reassessment of their abundance in plant genomes. HelitronScanner promises to be a valuable tool in future comparative and evolutionary studies of this major transposon superfamily.
2013
Li, Y, Harris L, Dooner HK.  2013.  TED, an autonomous and rare maize transposon of the mutator superfamily with a high gametophytic excision frequency.. The Plant cell. 25(9):3251-65. Abstract
Mutator (Mu) elements, one of the most diverse superfamilies of DNA transposons, are found in all eukaryotic kingdoms, but are particularly numerous in plants. Most of the present knowledge on the transposition behavior of this superfamily comes from studies of the maize (Zea mays) Mu elements, whose transposition is mediated by the autonomous Mutator-Don Robertson (MuDR) element. Here, we describe the maize element TED (for Transposon Ellen Dempsey), an autonomous cousin that differs significantly from MuDR. Element excision and reinsertion appear to require both proteins encoded by MuDR, but only the single protein encoded by TED. Germinal excisions, rare with MuDR, are common with TED, but arise in one of the mitotic divisions of the gametophyte, rather than at meiosis. Instead, transposition-deficient elements arise at meiosis, suggesting that the double-strand breaks produced by element excision are repaired differently in mitosis and meiosis. Unlike MuDR, TED is a very low-copy transposon whose number and activity do not undergo dramatic changes upon inbreeding or outcrossing. Like MuDR, TED transposes mostly to unlinked sites and can form circular transposition products. Sequences closer to TED than to MuDR were detected only in the grasses, suggesting a rather recent evolutionary split from a common ancestor.
Xiong, W, He L, Li Y, Dooner HK, Du C.  2013.  InsertionMapper: a pipeline tool for the identification of targeted sequences from multidimensional high throughput sequencing data.. BMC genomics. 14:679. Abstract
The advent of next-generation high-throughput technologies has revolutionized whole genome sequencing, yet some experiments require sequencing only of targeted regions of the genome from a very large number of samples. These regions can be amplified by PCR and sequenced by next-generation methods using a multidimensional pooling strategy. However, there is at present no available generalized tool for the computational analysis of target-enriched NGS data from multidimensional pools.
Li, Y., Segal, G., Wang, Q., Dooner HK.  2013.  Gene tagging with engineered Ds elements in maize. Methods in Molecular Biology: Plant Transposable Elements. :83-99.
Dooner, HK, Weil CF.  2013.  Transposons and gene creation. Molecular Genetics and Epigenetics of Plant Transposons. :143-167.
2012
Wang, Q., Dooner HK.  2012.  Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses.. The Plant journal : for cell and molecular biology. 72(2):212-21. Abstract
Genome structure exhibits remarkable plasticity within Zea mays. To examine how haplotype structure has evolved within the Andropogoneae tribe, we have analyzed the bz gene-rich region of maize (Zea mays), the Zea teosintes mays ssp. mexicana, luxurians and diploperennis, Tripsacum dactyloides, Coix lacryma-jobi and Sorghum propinquum. We sequenced and annotated BAC clones from these species and re-annotated the orthologous Sorghum bicolor region. Gene colinearity in the region is well conserved within the genus Zea. However, the orthologous regions of Coix and Sorghum exhibited several micro-rearrangements relative to Zea, including addition, truncation and deletion of genes. The stc1 gene, involved in the production of a terpenoid insect defense signal, is evolving particularly fast, and its progressive disappearance from some species is occurring by microhomology-mediated recombination. LTR retrotransposons are the main contributors to the dynamic evolution of the bz region. Common transposon insertion sites occur among haplotypes from different Zea mays sub-species, but not outside the species. As in Zea, different patterns of interspersion between genes and retrotransposons are observed in Sorghum. We estimate that the mean divergence times between maize and Tripsacum, Coix and Sorghum are 8.5, 12.1 and 12.4 million years ago, respectively, and that between Coix and Sorghum is 9.3 million years ago. A comparison of the bz orthologous regions of Zea, Sorghum and Coix with those of Brachypodium, Setaria and Oryza allows us to infer how the region has evolved by addition and deletion of genes in the approximately 50 million years since these genera diverged from a common progenitor.
Li, Y., Dooner HK.  2012.  Helitron Proliferation and Gene-Fragment Capture. Topics in Current Genetics, 24: Plant Transposable Elements- Impact on Genome Structure and Function. :193-227.
2011
Miclaus, M, Wu Y, Xu J, Dooner HK, Messing J.  2011.  The maize high-lysine mutant opaque7 is defective in an acyl-CoA synthetase-like protein.. Genetics. 189:1271-1280.
2009
Du, C., Fefelova, N., Caronna, J., He, L., Dooner HK.  2009.  The polychromatic Helitron landscape of the maize genome. Proc. Natl. Acad. Sci. U.S.A.. 106:19916–19921. Abstract
150 copies of a transposon-like sequence, termed Heltir, that has terminal inverted repeats resembling Helitron 3' termini. Nonautonomous Helitrons make up at least 2% of the maize genome and most of those tested show +/- polymorphisms among modern inbred lines.
Li, Y., Dooner HK.  2009.  Excision of Helitron transposons in maize. Genetics. 182:399–402. Abstract
Helitrons are novel transposons discovered by bioinformatic analysis of eukaryotic genome sequences. They are believed to move by rolling circle (RC) replication because their predicted transposases are homologous to those of bacterial RC transposons. We report here evidence of somatic Helitron excision in maize, an unexpected finding suggesting that Helitrons can exhibit an excisive mode of transposition.
He, L., Dooner HK.  2009.  Haplotype structure strongly affects recombination in a maize genetic interval polymorphic for Helitron and retrotransposon insertions. Proc. Natl. Acad. Sci. U.S.A.. 106:8410–8416. Abstract
We have asked here how the remarkable variation in maize haplotype structure affects recombination. We compared recombination across a genetic interval of 9S in 2 highly dissimilar heterozygotes that shared 1 parent. The genetic interval in the common haplotype is approximately 100 kb long and contains 6 genes interspersed with gene-fragment-bearing Helitrons and retrotransposons that, together, comprise 70% of its length. In one heterozygote, most intergenic insertions are homozygous, although polymorphic, enabling us to determine whether any recombination junctions fall within them. In the other, most intergenic insertions are hemizygous and, thus, incapable of homologous recombination. Our analysis of the frequency and distribution of recombination in the interval revealed that: (i) Most junctions were circumscribed to the gene space, where they showed a highly nonuniform distribution. In both heterozygotes, more than half of the junctions fell in the stc1 gene, making it a clear recombination hotspot in the region. However, the genetic size of stc1 was 2-fold lower when flanked by a hemizygous 25-kb retrotransposon cluster. (ii) No junctions fell in the hypro1 gene in either heterozygote, making it a genic recombination coldspot. (iii) No recombination occurred within the gene fragments borne on Helitrons nor within retrotransposons, so neither insertion class contributes to the interval's genetic length. (iv) Unexpectedly, several junctions fell in an intergenic region not shared by all 3 haplotypes. (v) In general, the ability of a sequence to recombine correlated inversely with its methylation status. Our results show that haplotypic structural variability strongly affects the frequency and distribution of recombination events in maize.
2008
Lin, C., Shen, B., Xu, Z., Kollner, T. G., Degenhardt, J., Dooner HK.  2008.  Characterization of the monoterpene synthase gene tps26, the ortholog of a gene induced by insect herbivory in maize. Plant Physiol.. 146:940–951. Abstract
Plants damaged by insects can synthesize and release volatile chemicals that attract natural enemies of the herbivore. The maize (Zea mays subsp. mays) terpene synthase gene stc1 is part of that indirect defense response, being induced in seedling blades in response to herbivory by beet army worm. Many genes in maize are duplicated because of a past whole-genome duplication event, and several of these orthologs display different expression patterns. We report here the isolation and characterization of tps26 and confirm by homology and synteny criteria that it is the ortholog of stc1. Prior genetic analysis revealed that the stc1 function is not duplicated, raising the interesting question of how the two orthologs have become differentiated in their expression. tps26 encodes a 633-amino acid protein that is highly conserved with STC1. Like stc1, tps26 is induced by wounding, but in the roots and leaf sheath, instead of the blade, and not in response to beet army worm feeding. tps26 maps near a quantitative trait locus for Southwestern corn borer resistance, making it a plausible candidate gene for that quantitative trait locus. However, while possessing highly polymorphic tps26 alleles, the resistant and susceptible parents of the mapping population do not differ in levels of tps26 expression. Moreover, tps26 is not induced specifically by Southwestern corn borer feeding. Therefore, although they share a wounding response, the stc1 and tps26 maize orthologs differ in their tissue specificity and their induction by insect herbivores. The N termini of STC1 and TPS26 are predicted to encode plastid transit peptides; fusion proteins of green fluorescent protein to either N terminus localized to the plastid, confirming that prediction. The mature proteins, but not the respective complete proteins, were active and synthesized a blend of monoterpenes, indicating that they are monoterpene synthases. A gene closely related to stc1/tps26 is found in the sorghum (Sorghum spp.) genome at a location that is not orthologous with stc1. The possible origin of stc1-like genes is discussed.
Dooner, HK, He L.  2008.  Maize genome structure variation: interplay between retrotransposon polymorphisms and genic recombination. Plant Cell. 20:249–258. AbstractWebsite
Although maize (Zea mays) retrotransposons are recombinationally inert, the highly polymorphic structure of maize haplotypes raises questions regarding the local effect of intergenic retrotransposons on recombination. To examine this effect, we compared recombination in the same genetic interval with and without a large retrotransposon cluster. We used three different bz1 locus haplotypes, McC, B73, and W22, in the same genetic background. We analyzed recombination between the bz1 and stc1 markers in heterozygotes that differ by the presence and absence of a 26-kb intergenic retrotransposon cluster. To facilitate the genetic screen, we used Ds and Ac markers that allowed us to identify recombinants by their seed pigmentation. We sequenced 239 recombination junctions and assigned them to a single nucleotide polymorphism-delimited interval in the region. The genetic distance between the markers was twofold smaller in the presence of the retrotransposon cluster. The reduction was seen in bz1 and stc1, but no recombination occurred in the highly polymorphic intergenic region of either heterozygote. Recombination within genes shuffled flanking retrotransposon clusters, creating new chimeric haplotypes and either contracting or expanding the physical distance between markers. Our findings imply that haplotype structure will profoundly affect the correlation between genetic and physical distance for the same interval in maize.
Huang, JT, Dooner HK.  2008.  Macrotransposition and other complex chromosomal restructuring in maize by closely linked transposons in direct orientation. Plant Cell. 20:2019–2032. Abstract
Several observations indicate that compatible ends of separate, yet closely linked, transposable elements (TEs) can interact in alternative transposition reactions. First, pairs of TEs cause chromosome breaks with frequencies inversely related to the intertransposon distance. Second, some combinations of two TEs produce complex rearrangements that often include DNA adjacent to one or both elements. In pairs of TEs in direct orientation, alternative reactions involving the external ends of the two TEs should lead to the transposition of a macrotransposon consisting of both elements plus the intervening chromosomal segment. Such macrotransposons have been hypothesized previously based on deletions, but no macrotransposon insertions have been recovered. To detect macrotransposition, we have analyzed heritable chromosomal rearrangements produced by a chromosome-breaking pair of Ac and Ds elements situated 6.5 kb apart in direct orientation in a part of the maize (Zea mays) genome dispensable for viability. Here, we show that the postulated macrotransposon can excise and reinsert elsewhere in the genome. In addition, this transposon pair produces other complex rearrangements, including deletions, inversions, and reshuffling of the intertransposon segment. Thus, closely linked TE pairs, a common transposition outcome in some superfamilies, are adept at restructuring chromosomes and may have been instrumental in reshaping plant genomes.
Du, C., Caronna J, He L, Dooner HK.  2008.  Computational prediction and molecular confirmation of Helitron transposons in the maize genome. BMC Genomics. 9:51. AbstractWebsite
Helitrons represent a new class of transposable elements recently uncovered in plants and animals. One remarkable feature of Helitrons is their ability to capture gene sequences, which makes them of considerable potential evolutionary importance. However, because Helitrons lack the typical structural features of other DNA transposable elements, identifying them is a challenge. Currently, most researchers identify Helitrons manually by comparing sequences. With the maize whole genome sequencing project underway, an automated computational Helitron searching tool is needed. The characterization of Helitron activities in maize needs to be addressed in order to better understand the impact of Helitrons on the organization of the genome.\\ We developed and implemented a heuristic searching algorithm in PERL for identifying Helitrons. Our HelitronFinder program will (i) take FASTA-formatted DNA sequences as input and identify the hairpin looping patterns, and (ii) exploit the consensus 5' and 3' end sequences of known Helitrons to identify putative ends. We randomly selected five predicted Helitrons from the program's high quality output for molecular verification. Four out of the five predicted Helitrons were confirmed by PCR assays and DNA sequencing in different maize inbred lines. The HelitronFinder program identified two head-to-head dissimilar Helitrons in a maize BAC sequence.\\ We have identified 140 new Helitron candidates in maize with our computational tool HelitronFinder by searching maize DNA sequences currently available in GenBank. Four out of five candidates were confirmed to be real by empirical methods, thus validating the predictions of HelitronFinder. Additional points to emerge from our study are that Helitrons do not always insert at an AT dinucleotide in the host sequences, that they can insert immediately adjacent to an existing Helitron, and that their movement may cause changes in the flanking region, such as deletions.
2007
Dooner, HK, Weil CF.  2007.  Give-and-take: interactions between DNA transposons and their host plant genomes. Curr. Opin. Genet. Dev.. 17:486–492. AbstractWebsite
Recent genome sequencing efforts have revealed how extensively transposable elements (TEs) have contributed to the shaping of present day plant genomes. DNA transposons associate preferentially with the euchromatic or genic component of plant genomes and have had the opportunity to interact intimately with the genes of the plant host. These interactions have resulted in TEs acquiring host sequences, forming chimeric genes through exon shuffling, replacing regulatory sequences, mobilizing genes around the genome, and contributing genes to the host. The close interaction of transposons with genes has also led to the evolution of intricate cellular mechanisms for silencing transposon activity. Transposons have thus become important subjects of study in understanding epigenetic regulation and, in cases where transposons have amplified to high numbers, how to escape that regulation.
2006
Wang, Q, Dooner HK.  2006.  Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc. Natl. Acad. Sci. U.S.A.. 103:17644–17649. Abstract
Maize is probably the most diverse of all crop species. Unexpectedly large differences among haplotypes were first revealed in a comparison of the bz genomic regions of two different inbred lines, McC and B73. Retrotransposon clusters, which comprise most of the repetitive DNA in maize, varied markedly in makeup, and location relative to the genes in the region and genic sequences, later shown to be carried by two helitron transposons, also differed between the inbreds. Thus, the allelic bz regions of these Corn Belt inbreds shared only a minority of the total sequence. To investigate further the variation caused by retrotransposons, helitrons, and other insertions, we have analyzed the organization of the bz genomic region in five additional cultivars selected because of their geographic and genetic diversity: the inbreds A188, CML258, and I137TN, and the land races Coroico and NalTel. This vertical comparison has revealed the existence of several new helitrons, new retrotransposons, members of every superfamily of DNA transposons, numerous miniature elements, and novel insertions flanked at either end by TA repeats, which we call TAFTs (TA-flanked transposons). The extent of variation in the region is remarkable. In pairwise comparisons of eight bz haplotypes, the percentage of shared sequences ranges from 25% to 84%. Chimeric haplotypes were identified that combine retrotransposon clusters found in different haplotypes. We propose that recombination in the common gene space greatly amplifies the variability produced by the retrotransposition explosion in the maize ancestry, creating the heterogeneity in genome organization found in modern maize.
Wu, XR, Chen Z, Shende A, Dooner HK, Folk WR.  2006.  Visualizing bz1 missense suppression in Zea mays: an assay for monocot tRNA expression and utilization. Plant Mol. Biol.. 61:795–798. Abstract
Val missense mutation, visualized by the development of anthocyanin pigment. Missense suppression is blocked by mutation of tRNA(ala)(GAC) at a site that prevents aminoacylation by the dicot alanyl-tRNA synthetase, indicating that features identified for expression and utilization of dicot tRNAs also function in monocots. This assay of the expression and utilization of tRNA(ala)(GAC) also can be used to study a variety of tRNAs and their genes, most of which can be relatively easily altered to be charged by alanyl tRNA synthetase.
Xu, Z, Dooner HK.  2006.  The maize aberrant pollen transmission 1 gene is a SABRE/KIP homolog required for pollen tube growth. Genetics. 172:1251–1261. Abstract
1 microm/sec. We describe here a gene required to attain that striking rate. The aberrant pollen transmission 1 (apt1) gene of maize was identified by an Ac-tagged mutation that displayed a severe pollen transmission deficit in heterozygotes. Rare apt1 homozygotes can be recovered, aided by phenotypic selection for Ac homozygotes. Half of the pollen in heterozygotes and most of the pollen in homozygotes germinate short and twisted pollen tubes. The apt1 gene is 26 kb long, makes an 8.6-kb pollen-specific transcript spliced from 22 exons, and encodes a protein of 2607 amino acids. The APT1 protein is homologous to SABRE and KIP, Arabidopsis proteins of unknown function involved in the elongation of root cortex cells and pollen tubes, respectively. Subcellular localization analysis demonstrates that APT1 colocalizes with a Golgi protein marker in growing tobacco pollen tubes. We hypothesize that the APT1 protein is involved in membrane trafficking and is required for the high secretory demands of tip growth in pollen tubes. The apt1-m1(Ac) mutable allele is an excellent tool for selecting Ac transpositions because of the strong negative selection pressure operating against the parental Ac site.
Messing, J, Dooner HK.  2006.  Organization and variability of the maize genome. Curr. Opin. Plant Biol.. 9:157–163. Abstract
With a size approximating that of the human genome, the maize genome is about to become the largest plant genome yet sequenced. Contributing to that size are a whole-genome duplication event and a retrotransposition explosion that produced a large amount of repetitive DNA. This DNA is greatly under-represented in cDNA collections, so analysis of the maize transcriptome has been an expedient way of assessing the gene content of maize. Over 2 million maize cDNA sequences are now available, making maize the third most widely studied organism, behind mouse and man. To date, the sequencing of large-sized DNA clones has been largely driven by the genetic interests of different investigators. The recent construction of a physical map that is anchored to the genetic map will aid immensely in the maize genome-sequencing effort. However, studies showing that the repetitive DNA component is highly polymorphic among maize inbred lines point to the need to sample vertically a few specific regions of the genome to evaluate the extent and importance of this variability.
2005
Lai, J, Li Y, Messing J, Dooner HK.  2005.  Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc. Natl. Acad. Sci. U.S.A.. 102:9068–9073. Abstract
Different maize inbred lines are polymorphic for the presence or absence of genic sequences at various allelic chromosomal locations. In the bz genomic region, located in 9S, sequences homologous to four different genes from rice and Arabidopsis are present in line McC but absent from line B73. It is shown here that this apparent intraspecific violation of genetic colinearity arises from the movement of genes or gene fragments by Helitrons, a recently discovered class of eukaryotic transposons. Two Helitrons, HelA and HelB, account for all of the genic differences distinguishing the two bz locus haplotypes. HelA is 5.9 kb long and contains sequences for three of the four genes found only in the McC bz genomic region. A nearly identical copy of HelA was isolated from a 5S chromosomal location in B73. Both the 9S and 5S sites appear to be polymorphic in maize, suggesting that these Helitrons have been active recently. Helitrons lack the strong predictive terminal features of other transposons, so the definition of their ends is greatly facilitated by the identification of their vacant sites in Helitron-minus lines. The ends of the 2.7-kb HelB Helitron were discerned from a comparison of the McC haplotype sequence with that of yet a third line, Mo17, because the HelB vacant site is deleted in B73. Maize Helitrons resemble rice Pack-MULEs in their ability to capture genes or gene fragments from several loci and move them around the genome, features that confer on them a potential role in gene evolution.
Xu, Z, Dooner HK.  2005.  Mx-rMx, a family of interacting transposons in the growing hAT superfamily of maize. Plant Cell. 17:375–388. Abstract
More than half a century after the discovery of transposable elements, the number of genetically defined autonomous elements that have been isolated and characterized molecularly in any one species remains surprisingly small. Because of its rich genetic history, maize (Zea mays) is, by far, the plant with the largest number of such elements. Yet, even in maize, a maximum of only two autonomous elements have been characterized in any transposon superfamily. This article describes the isolation and molecular and genetic characterization of Mx (for mobile element induced by x-rays), a third autonomous member of the hAT transposon superfamily in maize. Mx is 3731 bp long, ends in 13-bp terminal inverted repeats (TIRs), and causes an 8-bp duplication of the target site. Mx and rMx (for responder to Mx), its 571-bp nonautonomous partner, define a classical family of interacting transposable elements. Surprisingly, the TIRs of Mx and rMx are only 73% identical, and the subterminal sequences are even less so, suggesting that Mx and rMx may represent diverging transposable elements still capable of mobilization by the same transposase. Sequences that are closer to the ends of either Mx or rMx are present in the maize genome. Mx is predicted to encode a 674-amino acid protein that is homologous to the Ac transposase. Although Mx and Ac are closely related, they do not interact. Other data suggest that maize may possess at least five families of hAT transposons that do not interact with each other. The possible origin of noninteracting transposon families within the same superfamily is discussed.