Krishnan, A, Zhang S, Liu Y, Tadmori KA, Bryant DA, Dismukes GC.  2016.  Consequences of ccmR deletion on respiration, fermentation and H2 metabolism in cyanobacterium Synechococcus sp. PCC 7002. Biotechnol Bioeng. Abstract2016_biotechbioeng_krishnan_ccmr_ko_bit25913.pdf
CcmR, a LysR-type transcriptional regulator, represses the genes encoding components of the high-affinity carbon concentration mechanism in cyanobacteria. Unexpectedly, deletion of the ccmR gene was found to alter the expression of the terminal oxidase and fermentative genes, especially the hydrogenase operon in the cyanobacterium Synechococcus sp. PCC 7002. Consistent with the transcriptomic data, the deletion strain exhibits flux increases (30-50%) in both aerobic O2 respiration and anaerobic H2 evolution. To understand how CcmR influences anaerobic metabolism, the kinetics of autofermentation were investigated following photoautotrophic growth. The autofermentative H2 yield increased by 50% in the CcmR deletion strain compared to the wild-type strain, and increased to 160% (within 20 h) upon continuous removal of H2 from the medium ("milking") to suppress uptake. Consistent with this greater reductant flux to H2 , the mutant excreted less lactate during autofermentation (NAD(P)H consuming pathway). To enhance the rate of NADH production during anaerobic metabolism, the ccmR mutant was engineered to introduce GAPDH overexpression (more NADH production) and LDH deletion (less NADH consumption). The triple mutant (ccmR deletion + GAPDH overexpression + LDH deletion) showed 6-8-fold greater H2 yield than the WT strain, achieving conversion rates of 17 nmol 108 cells-1 h-1 and yield of 0.87 H2 per glucose equivalent (8.9% theoretical maximum). Simultaneous monitoring of the intracellular NAD(P)H concentration and H2 production rate by these mutants reveals an inverse correspondence between these variables indicating hydrogenase-dependent H2 production as a major sink for consuming NAD(P)H in preference to excretion of reduced carbon as lactate during fermentation.
Qian, X, Kim M K, Kumaraswamy KG, Agarwal A, Lun DS, Dismukes CG.  2016.  Flux balance analysis of photoautotrophic metabolism: Uncovering new biological details of subsystems involved in cyanobacterial photosynthesis. Biochimica et Biophysica Acta (BBA) - Bioenergetics. :-. AbstractWebsite
We have constructed and experimentally tested a comprehensive genome-scale model of photoautotrophic growth, denoted iSyp821, for the cyanobacterium Synechococcus sp. PCC 7002. iSyp821 incorporates a variable biomass objective function (vBOF), in which stoichiometries of the major biomass components vary according to light intensity. The vBOF was constrained to fit the measured cellular carbohydrate/protein content under different light intensities. iSyp821 provides rigorous agreement with experimentally measured cell growth rates and inorganic carbon uptake rates as a function of light intensity. iSyp821 predicts two observed metabolic transitions that occur as light intensity increases: 1) from PSI-cyclic to linear electron flow (greater redox energy), and 2) from carbon allocation as proteins (growth) to carbohydrates (energy storage) mode. iSyp821 predicts photoautotrophic carbon flux into 1) a hybrid gluconeogenesis-pentose phosphate (PP) pathway that produces glycogen by an alternative pathway than conventional gluconeogenesis, and 2) the photorespiration pathway to synthesize the essential amino acid, glycine. Quantitative fluxes through both pathways were verified experimentally by following the kinetics of formation of 13C metabolites from 13CO2 fixation. iSyp821 was modified to include changes in gene products (enzymes) from experimentally measured transcriptomic data and applied to estimate changes in concentrations of metabolites arising from nutrient stress. Using this strategy, we found that iSyp821 correctly predicts the observed redistribution pattern of carbon products under nitrogen depletion, including decreased rates of CO2 uptake, amino acid synthesis, and increased rates of glycogen and lipid synthesis.
Vinyard, DJ, Sun JS, Gimpel J, Ananyev GM, Mayfield SP, Dismukes GC.  2016.  Natural isoforms of the Photosystem II D1 subunit differ in photoassembly efficiency of the water-oxidizing complex.. Photosynth Res.. Abstractvinyard_et_al_2016_d1_isoforms.pdf
Oxygenic photosynthesis efficiency at increasing solar flux is limited by light-induced damage (photoinhibition) of Photosystem II (PSII), primarily targeting the D1 reaction center subunit. Some cyanobacteria contain two natural isoforms of D1 that function better under low light (D1:1) or high light (D1:2). Herein, rates and yields of photoassembly of the Mn4CaO5 water-oxidizing complex (WOC) from the free inorganic cofactors (Mn2+, Ca2+, water, electron acceptor) and apo-WOC-PSII are shown to differ significantly: D1:1 apo-WOC-PSII exhibits a 2.3-fold faster rate-limiting step of photoassembly and up to seven-fold faster rate to the first light-stable Mn3+ intermediate, IM1*, but with a much higher rate of photoinhibition than D1:2. Conversely, D1:2 apo-WOC-PSII assembles slower but has up to seven-fold higher yield, achieved by a higher quantum yield of charge separation and slower photoinhibition rate. These results confirm and extend previous observations of the two holoenzymes: D1:2-PSII has a greater quantum yield of primary charge separation, faster [P680 + Q A - ] charge recombination and less photoinhibition that results in a slower rate and higher yield of photoassembly of its apo-WOC-PSII complex. In contrast, D1:1-PSII has a lower quantum yield of primary charge separation, a slower [P680 + Q A - ] charge recombination rate, and faster photoinhibition that together result in higher rate but lower yield of photoassembly at higher light intensities. Cyanobacterial PSII reaction centers that contain the high- and low-light D1 isoforms can tailor performance to optimize photosynthesis at varying light conditions, with similar consequences on their photoassembly kinetics and yield. These different efficiencies of photoassembly versus photoinhibition impose differential costs for biosynthesis as a function of light intensity.
Ananyev, GM, Gates C, Dismukes GC.  2016.  The Oxygen quantum yield in diverse algae and cyanobacteria is controlled by partitioning of flux between linear and cyclic electron flow within photosystem II.. Biochim Biophys Acta.. 1857(9):1380-1391. Abstract
We have measured flash-induced oxygen quantum yields (O2-QYs) and primary charge separation (Chl variable fluorescence yield, Fv/Fm) in vivo among phylogenetically diverse microalgae and cyanobacteria. Higher O2-QYs can be attained in cells by releasing constraints on charge transfer at the Photosystem II (PSII) acceptor side by adding membrane-permeable benzoquinone (BQ) derivatives that oxidize plastosemiquinone QB- and QBH2. This method allows uncoupling PSII turnover from its natural regulation in living cells, without artifacts of isolating PSII complexes. This approach reveals different extents of regulation across species, controlled at the QB- acceptor site. Arthrospira maxima is confirmed as the most efficient PSII-WOC (water oxidizing complex) and exhibits the least regulation of flux. Thermosynechococcus elongatus exhibits an O2-QY of 30%, suggesting strong downregulation. WOC cycle simulations with the most accurate model (VZAD) show that a light-driven backward transition (net addition of an electron to the WOC, distinct from recombination) occurs in up to 25% of native PSIIs in the S2 and S3 states, while adding BQ prevents backward transitions and increases the lifetime of S2 and S3 by 10-fold. Backward transitions occur in PSIIs that have plastosemiquinone radicals in the QB site and are postulated to be physiologically regulated pathways for storing light energy as proton gradient through direct PSII-cyclic electron flow (PSII-CEF). PSII-CEF is independent of classical PSI/cyt-b6f-CEF and provides an alternative proton translocation pathway for energy conversion. PSII-CEF enables variable fluxes between linear and cyclic electron pathways, thus accommodating species-dependent needs for redox and ion-gradient energy sources powered by a single photosystem.
Gates, C, Ananyev GM, Dismukes C.  2016.  The strontium inorganic mutant of the water oxidizing center (CaMn4O5) of PSII improves WOC efficiency but slows electron flux through the terminal acceptors.. Biochim Biophys Acta.. 1857(9):1550-1560. Abstractgates_2016_woc.pdf
Herein we extend prior studies of biosynthetic strontium replacement of calcium in PSII-WOC core particles to characterize whole cells. Previous studies of Thermosynechococcus elongatus found a lower rate of light-saturated O2 from isolated PSII-WOC(Sr) cores and 5–8 × slower rate of oxygen release. We find similar properties in whole cells, and show it is due to a 20% larger Arrhenius activation barrier for O2 evolution. Cellular adaptation to the sluggish PSII-WOC(Sr) cycle occurs in which flux through the QAQB acceptor gate becomes limiting for turnover rate in vivo. Benzoquinone derivatives that bind to QB site remove this kinetic chokepoint yielding 31% greater O2 quantum yield (QY) of PSII-WOC(Sr) vs. PSII-WOC(Ca). QY and efficiency of the WOC(Sr) catalytic cycle are greatly improved at low light flux, due to fewer misses and backward transitions and 3-fold longer lifetime of the unstable S3 state, attributed to greater thermodynamic stabilization of the WOC(Sr) relative to the photoactive tyrosine YZ. More linear and less cyclic electron flow through PSII occurs per PSII-WOC(Sr). The organismal response to the more active PSII centers in Sr-grown cells at 45 °C is to lower the number of active PSII-WOC per Chl, producing comparable oxygen and energy per cell. We conclude that redox and protonic energy fluxes created by PSII are primary determinants for optimal growth rate of T. elongatus. We further conclude that the (Sr-favored) intermediate-spin S = 5/2 form of the S2 state is the active form in the catalytic cycle relative to the low-spin S = 1/2 form.
Qian, X, Kumaraswamy GK, Zhang S, Gates C, Ananyev GM, Bryant DA, Dismukes GC.  2015.  Inactivation of nitrate reductase alters metabolic branching of carbohydrate fermentation in the cyanobacterium Synechococcus sp. strain PCC 7002.. Biotechnol Bioeng. 113(5):979-988. Abstractpicture4.pngqian_et_al-2016-biotechnology_and_bioengineering.pdf
To produce cellular energy, cyanobacteria reduce nitrate as the preferred pathway over proton reduction (H2 evolution) by catabolizing glycogen under dark anaerobic conditions. This competition lowers H2 production by consuming a large fraction of the reducing equivalents (NADPH and NADH). To eliminate this competition, we constructed a knockout mutant of nitrate reductase, encoded by narB, in Synechococcus sp. PCC 7002. As expected, ΔnarB was able to take up intracellular nitrate but was unable to reduce it to nitrite or ammonia, and was unable to grow photoautotrophically on nitrate. During photoautotrophic growth on urea, ΔnarB significantly redirects biomass accumulation into glycogen at the expense of protein accumulation. During subsequent dark fermentation, metabolite concentrations-both the adenylate cellular energy charge (∼ATP) and the redox poise (NAD(P)H/NAD(P))-were independent of nitrate availability in ΔnarB, in contrast to the wild type (WT) control. The ΔnarB strain diverted more reducing equivalents from glycogen catabolism into reduced products, mainly H2 and d-lactate, by 6-fold (2.8% yield) and 2-fold (82.3% yield), respectively, than WT. Continuous removal of H2 from the fermentation medium (milking) further boosted net H2 production by 7-fold in ΔnarB, at the expense of less excreted lactate, resulting in a 49-fold combined increase in the net H2 evolution rate during 2 days of fermentation compared to the WT. The absence of nitrate reductase eliminated the inductive effect of nitrate addition on rerouting carbohydrate catabolism from glycolysis to the oxidative pentose phosphate (OPP) pathway, indicating that intracellular redox poise and not nitrate itself acts as the control switch for carbon flux branching between pathways.
Krishnan, A, Kumaraswamy GK, Vinyard DJ, Gu H, Ananyev G, Posewitz MZ, Dismukes GC.  2015.  Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant.. Plant J. 81(6):947-960. Abstractkrishnan_et_al-2015-the_plant_journal.pdf
Upon nutrient deprivation, microalgae partition photosynthate into starch and lipids at the expense of protein synthesis and growth. We investigated the role of starch biosynthesis with respect to photosynthetic growth and carbon partitioning in the Chlamydomonas reinhardtii starchless mutant, sta6, which lacks ADP-glucose pyrophosphorylase. This mutant is unable to convert glucose-1-phosphate to ADP-glucose, the precursor of starch biosynthesis. During nutrient-replete culturing, sta6 does not re-direct metabolism to make more proteins or lipids, and accumulates 20% less biomass. The underlying molecular basis for the decreased biomass phenotype was identified using LC-MS metabolomics studies and flux methods. Above a threshold light intensity, photosynthetic electron transport rates (water → CO2) decrease in sta6 due to attenuated rates of NADPH re-oxidation, without affecting photosystems I or II (no change in isolated photosynthetic electron transport). We observed large accumulations of carbon metabolites that are precursors for the biosynthesis of lipids, amino acids and sugars/starch, indicating system-wide consequences of slower NADPH re-oxidation. Attenuated carbon fixation resulted in imbalances in both redox and adenylate energy. The pool sizes of both pyridine and adenylate nucleotides in sta6 increased substantially to compensate for the slower rate of turnover. Mitochondrial respiration partially relieved the reductant stress; however, prolonged high-light exposure caused accelerated photoinhibition. Thus, starch biosynthesis in Chlamydomonas plays a critical role as a principal carbon sink influencing cellular energy balance however, disrupting starch biosynthesis does not redirect resources to other bioproducts (lipids or proteins) during nutrient-replete culturing, resulting in cells that are susceptible to photochemical damage caused by redox stress.
Gardner, G, Al-Sharab J, Danilovic N, Go Y B, Ayers KE, Greenblatt M, Dismukes G C.  2015.  Structural Basis for Differing Electrocatalytic Water Oxidation by the Cubic, Layered and Spinel Forms of Lithium Cobalt Oxides. Energy Environ. Sci.. :-. AbstractWebsite
The two polymorphs of lithium cobalt oxide, LiCoO2, present an opportunity to contrast the structural requirements for reversible charge storage (battery function) vs catalysis of water oxidation/oxygen evolution (OER; 2H2O[rightward arrow]O2 + 4H+ + 4e- ). Previously, we reported high OER electrocatalytic activity from nanocrystals of the cubic phase vs. poor activity from the layered phase - the archetypal lithium-ion battery cathode. Here we apply transmission electron microscopy, electron diffraction, voltammetry and elemental analysis under OER electrolysis condition to show that labile Li+ ions (de)intercalate from layered LiCoO2, initiating structural reorganization to the cubic spinel LiCo2O4, in parallel with formation of an active catalytic phase. Comparison of cubic LiCoO2 (50nm) to iridium (5 nm) nanoparticles for OER catalysis (commercial benchmark) in basic and neutral electrolyte reveals excellent performance in terms of Tafel slope (48 mV dec-1), overpotential ([small eta] =  420 mV @ 10 mA cm-2 at pH = 14), Faradic yield (100%) and OER stability (no loss in 14 hours). The inherent OER activity of cubic LiCoO2 and spinel LiCo2O4 is attributable to their [Co4O4]n+ cubane structural units, which provides lower oxidation potential to Co4+ and lower inter-cubane hole mobility. By contrast, the layered phase which lacks cubanes exhibits extensive intra-planar hole delocalization which entropically disfavors the four electron/hole concerted OER reaction.
Deibert, BJ, Zhang J, Smith PF, Chapman KW, Rangan S, Banerjee D, Tan K, Wang H, Pasguale N, Chen F et al..  2015.  Surface and Structural Investigation of a MnOx Birnessite-Type Water Oxidation Catalyst Formed under Photocatalytic Conditions. Chemistry. 21(40):14218-14228. Abstractdeibert_et_al-2015-chemistry_-_a_european_journal.pdf
Catalytically active MnOx species have been reported to form in situ from various Mn-complexes during electrocatalytic and solution-based water oxidation when employing cerium(IV) ammonium ammonium nitrate (CAN) oxidant as a sacrificial reagent. The full structural characterization of these oxides may be complicated by the presence of support material and lack of a pure bulk phase. For the first time, we show that highly active MnOx catalysts form without supports in situ under photocatalytic conditions. Our most active (4)MnOx catalyst (∼0.84 mmol O2  mol Mn(-1) s(-1)) forms from a Mn4O4 bearing a metal-organic framework. (4)MnOx is characterized by pair distribution function analysis (PDF), Raman spectroscopy, and HR-TEM as a disordered, layered Mn-oxide with high surface area (216 m(2) g(-1)) and small regions of crystallinity and layer flexibility. In contrast, the (S)MnOx formed from Mn(2+) salt gives an amorphous species of lower surface area (80 m(2) g(-1)) and lower activity (∼0.15 mmol O2  mol Mn(-1) s(-1)). We compare these catalysts to crystalline hexagonal birnessite, which activates under the same conditions. Full deconvolution of the XPS Mn2p3/2 core levels detects enriched Mn(3+) and Mn(2+) content on the surfaces, which indicates possible disproportionation/comproportionation surface equilibria.
Smith, PF, Hunt L, Laursen AB, Sagar V, Kaushik S, Calvinho KU, Marotta G, Mosconi E, De Angelis F, Dismukes GC.  2015.  Water Oxidation by the [Co4O4(OAc)4(py)4](+) Cubium is Initiated by OH(-) Addition.. J Am Chem Soc. 137(49):15460-15468. Abstractsmith_et_al_2015_jacs.pdf
The cobalt cubium Co4O4(OAc)4(py)4(ClO4) (1A(+)) containing the mixed valence [Co4O4](5+) core is shown by multiple spectroscopic methods to react with hydroxide (OH(-)) but not with water molecules to produce O2. The yield of reaction products is stoichiometric (>99.5%): 41A(+) + 4OH(-) → O2 + 2H2O + 41A. By contrast, the structurally homologous cubium Co4O4(trans-OAc)2(bpy)4(ClO4)3, 1B(ClO4)3, produces no O2. EPR/NMR spectroscopies show clean conversion to cubane 1A during O2 evolution with no Co(2+) or Co3O4 side products. Mass spectrometry of the reaction between isotopically labeled μ-(16)O(bridging-oxo) 1A(+) and (18)O-bicarbonate/water shows (1) no exchange of (18)O into the bridging oxos of 1A(+), and (2) (36)O2 is the major product, thus requiring two OH(-) in the reactive intermediate. DFT calculations of solvated intermediates suggest that addition of two OH(-) to 1A(+) via OH(-) insertion into Co-OAc bonds is energetically favored, followed by outer-sphere oxidation to intermediate [1A(OH)2](0). The absence of O2 production by cubium 1B(3+) indicates the reactive intermediate derived from 1A(+) requires gem-1,1-dihydoxo stereochemistry to perform O-O bond formation. Outer-sphere oxidation of this intermediate by 2 equiv of 1A(+) accounts for the final stoichiometry. Collectively, these results and recent literature (Faraday Discuss., doi:10.1039/C5FD00076A and J. Am. Chem. Soc. 2015, 137, 12865-12872) validate the [Co4O4](4+/5+) cubane core as an intrinsic catalyst for oxidation of hydroxide by an inner-sphere mechanism.
Carrell TG, Smith PF, Dennes J, Dismukes CG.  2014.  Entropy and enthalpy contributions to the kinetics of proton coupled electron transfer to the Mn4O4(O2PPh2)6 cubane.. Physical chemistry chemical physics : PCCP. 16(24):11843-7. Abstract
The dependence of rate, entropy of activation, and ((1)H/(2)H) kinetic isotope effect for H-atom transfer from a series of p-substituted phenols to cubane Mn4O4L6 (L = O2PPh2) () reveals the activation energy to form the transition state is proportional to the phenolic O-H bond dissociation energy. New implications for water oxidation and charge recombination in photosystem II are described.
Vinyard, DJ, Gimpel J, Ananyev GM, Mayfield SP, Dismukes CG.  2014.  Engineered Photosystem II reaction centers optimize photochemistry versus photoprotection at different solar intensities.. Journal of the American Chemical Society. 136(10):4048-55. Abstract
The D1 protein of Photosystem II (PSII) provides most of the ligating amino acid residues for the Mn4CaO5 water-oxidizing complex (WOC) and half of the reaction center cofactors, and it is present as two isoforms in the cyanobacterium Synechococcus elongatus PCC 7942. These isoforms, D1:1 and D1:2, confer functional advantages for photosynthetic growth at low and high light intensities, respectively. D1:1, D1:2, and seven point mutations in the D1:2 background that are native to D1:1 were expressed in the green alga Chlamydomonas reinhardtii. We used these nine strains to show that those strains that confer a higher yield of PSII charge separation under light-limiting conditions (where charge recombination is significant) have less efficient photochemical turnover, measured in terms of both a lower WOC turnover probability and a longer WOC cycle period. Conversely, these same strains under light saturation (where charge recombination does not compete) confer a correspondingly faster O2 evolution rate and greater protection against photoinhibition. Taken together, the data clearly establish that PSII primary charge separation is a trade-off between photochemical productivity (water oxidation and plastoquinone reduction) and charge recombination (photoprotection). These trade-offs add up to a significant growth advantage for the two natural isoforms. These insights provide fundamental design principles for engineering of PSII reaction centers with optimal photochemical efficiencies for growth at low versus high light intensities.
McNeely, K, Kumaraswamy KG, Guerra T, Bennette N, Ananyev G, Dismukes CG.  2014.  Metabolic switching of central carbon metabolism in response to nitrate: Application to autofermentative hydrogen production in cyanobacteria.. Journal of biotechnology. 182-183:83-91. Abstract
Nitrate removal from culture media is widely used to enhance autofermentative hydrogen production in cyanobacteria during dark anaerobiosis. Here we have performed a systematic inventory of carbon and nitrogen metabolites, redox pools, and excreted product fluxes which show that addition of nitrate to cultures of Synechococcus sp. PCC 7002 has no influence on glycogen catabolic rate, but shifts the distribution of excreted products from predominantly lactate and H2 to predominantly CO2 and nitrite, while increasing the total consumption of intracellular reducing equivalents (mainly glycogen) by 3-fold. Together with LC-MS derived metabolite pool sizes these data show that glycogen catabolism is redirected from the upper-glycolytic (EMP) pathway to the oxidative pentose phosphate (OPP) pathway upon nitrate addition. This metabolic switch in carbon catabolism is shown to temporally correlate with the pyridine nucleotide redox-poise (NAD(P)H/NAD(P)(+)) and demonstrates the reductant availability controls H2 evolution in cyanobacteria.
Smith, PF, Kaplan C, Sheats JE, Robinson DM, McCool NS, Mezle N, Dismukes CG.  2014.  What determines catalyst functionality in molecular water oxidation? Dependence on ligands and metal nuclearity in cobalt clusters. Inorganic chemistry. 53(4):2113-21. Abstract
The metal-oxo M4O4 "cubane" topology is of special significance to the field of water oxidation as it represents the merging of bioinspired structural principles derived from natural photosynthesis with successful artificial catalysts known to date. Herein, we directly compare the rates of water oxidation/O2 evolution catalyzed by six cobalt-oxo clusters including the Co4O4 cubanes, Co4O4(OAc)4(py)4 and [Co4O4(OAc)2(bpy)4](2+), using the common Ru(bpy)3(2+)/S2O8(2-) photo-oxidant assay. At pH 8, the first-order rate constants for these cubanes differ by 2-fold, 0.030 and 0.015 s(-1), respectively, reflecting the number of labile carboxylate sites that allow substrate water binding in a pre-equilibrium step before O2 release. Kinetic results reveal a deprotonation step occurs on this pathway and that two electrons are removed before O2 evolution occurs. The Co4O4 cubane core is shown to be the smallest catalytic unit for the intramolecular water oxidation pathway, as neither "incomplete cubane" trimers [Co3O(OH)3(OAc)2(bpy)3](2+) and [Co3O(OH)2(OAc)3(py)5](2+) nor "half cubane" dimers [Co2(OH)2(OAc)3(bpy)2](+) and [Co2(OH)2(OAc)3(py)4](+) were found capable of evolving O2, despite having the same ligand sets as their cubane counterparts. Electrochemical studies reveal that oxidation of both cubanes to formally Co4(3III,IV) (0.7 V vs Ag/AgCl) occurs readily, while neither dimers nor trimers are oxidized below 1.5 V, pointing to appreciably greater charge delocalization in the [Co4O4](5+) core. The origin of catalytic activity by Co4O4 cubanes illustrates three key features for water oxidation: (1) four one-electron redox metals, (2) efficient charge delocalization of the first oxidation step across the Co4O4 cluster, allowing for stabilization of higher oxidizing equivalents, and (3) terminal coordination site for substrate aquo/oxo formation.
Holder, AA, Taylor P, Magnusen AR, Moffett ET, Meyer K, Hong Y, Ramsdale SE, Gordon M, Stubbs J, Seymour LA et al..  2013.  Preliminary anti-cancer photodynamic therapeutic in vitro studies with mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes.. Dalton transactions (Cambridge, England : 2003). 42(33):11881-99. Abstract
We report the synthesis and characterisation of mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes, which were used as potential photodynamic therapeutic agents for melanoma cell growth inhibition. The novel complexes, [Ru(pbt)2(phen2DTT)](PF6)2·1.5H2O 1 (where phen2DTT = 1,4-bis(1,10-phenanthrolin-5-ylsulfanyl)butane-2,3-diol and pbt = 2-(2'-pyridyl)benzothiazole) and [Ru(pbt)2(tpphz)](PF6)2·3H2O 2 (where tpphz = tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) were synthesised and characterised. Compound 1 was reacted with [VO(sal-L-tryp)(H2O)] (where sal-L-tryp = N-salicylidene-L-tryptophanate) to produce [Ru(pbt)2(phen2DTT)VO(sal-L-tryp)](PF6)2·5H2O 4; while [VO(sal-L-tryp)(H2O)] was reacted with compound 2 to produce [Ru(pbt)2(tpphz)VO(sal-L-tryp)](PF6)2·6H2O 3. All complexes were characterised by elemental analysis, HRMS, ESI MS, UV-visible absorption, ESR spectroscopy, and cyclic voltammetry, where appropriate. In vitro cell toxicity studies (with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay) via dark and light reaction conditions were carried out with sodium diaqua-4,4',4'',4''' tetrasulfophthalocyaninecobaltate(II) (Na4[Co(tspc)(H2O)2]), [VO(sal-L-tryp)(phen)]·H2O, and the chloride salts of complexes 3 and 4. Such studies involved A431, human epidermoid carcinoma cells; human amelanotic malignant melanoma cells; and HFF, non-cancerous human skin fibroblast cells. Both chloride salts of complexes 3 and 4 were found to be more toxic to melanoma cells than to non-cancerous fibroblast cells, and preferentially led to apoptosis of the melanoma cells over non-cancerous skin cells. The anti-cancer property of the chloride salts of complexes 3 and 4 was further enhanced when treated cells were exposed to light, while no such effect was observed on non-cancerous skin fibroblast cells. ESR and (51)V NMR spectroscopic studies were also used to assess the stability of the chloride salts of complexes 3 and 4 in aqueous media at pH 7.19. This research illustrates the potential for using mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes to fight skin cancer.
Khorobrykh, A, Dasgupta J, Kolling DRJ, Terentyev V, Klimov VV, Dismukes CG.  2013.  Evolutionary origins of the photosynthetic water oxidation cluster: bicarbonate permits Mn(2+) photo-oxidation by anoxygenic bacterial reaction centers.. Chembiochem : a European journal of chemical biology. 14(14):1725-31. Abstract
The enzyme that catalyzes water oxidation in oxygenic photosynthesis contains an inorganic cluster (Mn4 CaO5 ) that is universally conserved in all photosystem II (PSII) protein complexes. Its hypothesized precursor is an anoxygenic photobacterium containing a type 2 reaction center as photo-oxidant (bRC2, iron-quinone type). Here we provide the first experimental evidence that a native bRC2 complex can catalyze the photo-oxidation of Mn(2+) to Mn(3+) , but only in the presence of bicarbonate concentrations that allows the formation of (bRC2)Mn(2+) (bicarbonate)1-2 complexes. Parallel-mode EPR spectroscopy was used to characterize the photoproduct, (bRC2)Mn(3+) (CO3 (2-) ), based on the g tensor and (55) Mn hyperfine splitting. (Bi)carbonate coordination extends the lifetime of the Mn(3+) photoproduct by slowing charge recombination. Prior electrochemical measurements show that carbonate complexation thermodynamically stabilizes the Mn(3+) product by 0.9-1 V relative to water ligands. A model for the origin of the water oxidation catalyst is presented that proposes chemically feasible steps in the evolution of oxygenic PSIIs, and is supported by literature results on the photoassembly of contemporary PSIIs.
Robinson, DM, Go Y B, Mui M, Gardner G, Zhang Z, Mastrogiovanni D, Garfunkel E, Li J, Greenblatt M, Dismukes CG.  2013.  Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis.. Journal of the American Chemical Society. 135(9):3494-501. Abstract
Manganese oxides occur naturally as minerals in at least 30 different crystal structures, providing a rigorous test system to explore the significance of atomic positions on the catalytic efficiency of water oxidation. In this study, we chose to systematically compare eight synthetic oxide structures containing Mn(III) and Mn(IV) only, with particular emphasis on the five known structural polymorphs of MnO2. We have adapted literature synthesis methods to obtain pure polymorphs and validated their homogeneity and crystallinity by powder X-ray diffraction and both transmission and scanning electron microscopies. Measurement of water oxidation rate by oxygen evolution in aqueous solution was conducted with dispersed nanoparticulate manganese oxides and a standard ruthenium dye photo-oxidant system. No Ru was absorbed on the catalyst surface as observed by XPS and EDX. The post reaction atomic structure was completely preserved with no amorphization, as observed by HRTEM. Catalytic activities, normalized to surface area (BET), decrease in the series Mn2O3 > Mn3O4 ≫ λ-MnO2, where the latter is derived from spinel LiMn2O4 following partial Li(+) removal. No catalytic activity is observed from LiMn2O4 and four of the MnO2 polymorphs, in contrast to some literature reports with polydispersed manganese oxides and electro-deposited films. Catalytic activity within the eight examined Mn oxides was found exclusively for (distorted) cubic phases, Mn2O3 (bixbyite), Mn3O4 (hausmannite), and λ-MnO2 (spinel), all containing Mn(III) possessing longer Mn-O bonds between edge-sharing MnO6 octahedra. Electronically degenerate Mn(III) has antibonding electronic configuration e(g)(1) which imparts lattice distortions due to the Jahn-Teller effect that are hypothesized to contribute to structural flexibility important for catalytic turnover in water oxidation at the surface.
Xu, Y, Guerra TL, Li Z, Ludwig M, Dismukes CG, Bryant DA.  2013.  Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp. strain PCC 7002: Cell factories for soluble sugars.. Metabolic engineering. 16:56-67. Abstract
Glycogen and compatible solutes are the major polymeric and soluble carbohydrates in cyanobacteria and function as energy reserves and osmoprotectants, respectively. Glycogen synthase null mutants (glgA-I glgA-II) were constructed in the cyanobacterium Synechococcus sp. strain PCC 7002. Under standard conditions the double mutant produced no glycogen and more soluble sugars. When grown under hypersaline conditions, the glgA-I glgA-II mutant accumulated 1.8-fold more soluble sugars (sucrose and glucosylglycer-(ol/ate)) than WT, and these cells spontaneously excreted soluble sugars into the medium at high levels without the need for additional transporters. An average of 27% more soluble sugars was released from the glgA-I glgA-II mutant than WT by hypo-osmotic shock. Extracellular vesicles budding from the outer membrane were observed by transmission electron microscopy in glgA-I glgA-II cells grown under hypersaline conditions. The glgA-I glgA-II mutant serves as a starting point for developing cell factories for photosynthetic production and excretion of sugars.
Vinyard, DJ, Xu Y, Bennette N, McNeely K, Bryant DA, Dismukes CG.  2013.  Natural osmolytes are much less effective substrates than glycogen for catabolic energy production in the marine cyanobacterium Synechococcus sp. strain PCC 7002.. Journal of biotechnology. 166(3):65-75. Abstract
ADP-glucose pyrophosphorylase, encoded by glgC, catalyzes the first step of glycogen and glucosylglycer(ol/ate) biosynthesis. Here we report the construction of the first glgC null mutant of a marine cyanobacterium (Synechococcus sp. PCC 7002) and investigate its impact on dark anoxic metabolism (autofermentation). The glgC mutant had 98% lower ADP-glucose, synthesized no glycogen and produced appreciably more soluble sugars (mainly sucrose) than wild type (WT). Some glucosylglycerol was still observed, which suggests that the mutant has another, inefficient ADP-glucose synthesis pathway. In contrast, hypersaline conditions (1M NaCl) were lethal to the mutant strain, indicating that, unlike other strains, the elevated sucrose does not compensate for the reduced GG as osmolyte. In contrast to WT, nitrate limitation did not cause bleaching of N-containing pigments or carbohydrate accumulation in the glgC mutant, indicating impaired recycling of nitrogen stores. Despite the 2-fold increase in osmolytes, both the respiration and autofermentation rates of the glgC mutant were appreciably slower (2-4-fold) and correlated quantitatively with the lower fraction of insoluble carbohydrates relative to WT (85% vs. 12%). However, the remaining insoluble carbohydrates still accounted for a high fraction of the carbohydrate catabolized (38%), indicating that insoluble carbohydrates rather than osmolytes were the preferred substrate for autofermentation.
Vinyard, DJ, Zachary CE, Ananyev G, Dismukes CG.  2013.  Thermodynamically accurate modeling of the catalytic cycle of photosynthetic oxygen evolution: a mathematical solution to asymmetric Markov chains.. Biochimica et biophysica acta. 1827(7):861-8. Abstract
Forty-three years ago, Kok and coworkers introduced a phenomenological model describing period-four oscillations in O2 flash yields during photosynthetic water oxidation (WOC), which had been first reported by Joliot and coworkers. The original two-parameter Kok model was subsequently extended in its level of complexity to better simulate diverse data sets, including intact cells and isolated PSII-WOCs, but at the expense of introducing physically unrealistic assumptions necessary to enable numerical solutions. To date, analytical solutions have been found only for symmetric Kok models (inefficiencies are equally probable for all intermediates, called "S-states"). However, it is widely accepted that S-state reaction steps are not identical and some are not reversible (by thermodynamic restraints) thereby causing asymmetric cycles. We have developed a mathematically more rigorous foundation that eliminates unphysical assumptions known to be in conflict with experiments and adopts a new experimental constraint on solutions. This new algorithm termed STEAMM for S-state Transition Eigenvalues of Asymmetric Markov Models enables solutions to models having fewer adjustable parameters and uses automated fitting to experimental data sets, yielding higher accuracy and precision than the classic Kok or extended Kok models. This new tool provides a general mathematical framework for analyzing damped oscillations arising from any cycle period using any appropriate Markov model, regardless of symmetry. We illustrate applications of STEAMM that better describe the intrinsic inefficiencies for photon-to-charge conversion within PSII-WOCs that are responsible for damped period-four and period-two oscillations of flash O2 yields across diverse species, while using simpler Markov models free from unrealistic assumptions.
Vinyard, DJ, Gimpel J, Ananyev GM, Cornejo MA, Golden SS, Mayfield SP, Dismukes CG.  2013.  Natural variants of photosystem II subunit D1 tune photochemical fitness to solar intensity.. The Journal of biological chemistry. 288(8):5451-62. Abstract
Photosystem II (PSII) is composed of six core polypeptides that make up the minimal unit capable of performing the primary photochemistry of light-driven charge separation and water oxidation in all oxygenic phototrophs. The D1 subunit of this complex contains most of the ligating amino acid residues for the Mn(4)CaO(5) core of the water-oxidizing complex (WOC). Most cyanobacteria have 3-5 copies of the psbA gene coding for at least two isoforms of D1, whereas algae and plants have only one isoform. Synechococcus elongatus PCC 7942 contains two D1 isoforms; D1:1 is expressed under low light conditions, and D1:2 is up-regulated in high light or stress conditions. Using a heterologous psbA expression system in the green alga Chlamydomonas reinhardtii, we have measured growth rate, WOC cycle efficiency, and O(2) yield as a function of D1:1, D1:2, or the native algal D1 isoform. D1:1-PSII cells outcompete D1:2-PSII cells and accumulate more biomass in light-limiting conditions. However, D1:2-PSII cells easily outcompete D1:1-PSII cells at high light intensities. The native C. reinhardtii-PSII WOC cycles less efficiently at all light intensities and produces less O(2) than either cyanobacterial D1 isoform. D1:2-PSII makes more O(2) per saturating flash than D1:1-PSII, but it exhibits lower WOC cycling efficiency at low light intensities due to a 40% faster charge recombination rate in the S(3) state. These functional advantages of D1:1-PSII and D1:2-PSII at low and high light regimes, respectively, can be explained by differences in predicted redox potentials of PSII electron acceptors that control kinetic performance.
Vinyard, DJ, Ananyev GM, Dismukes CG.  2013.  Photosystem II: the reaction center of oxygenic photosynthesis.. Annual review of biochemistry. 82:577-606. Abstract
Photosystem II (PSII) uses light energy to split water into chemical products that power the planet. The stripped protons contribute to a membrane electrochemical potential before combining with the stripped electrons to make chemical bonds and releasing O2 for powering respiratory metabolisms. In this review, we provide an overview of the kinetics and thermodynamics of water oxidation that highlights the conserved performance of PSIIs across species. We discuss recent advances in our understanding of the site of water oxidation based upon the improved (1.9-Å resolution) atomic structure of the Mn4CaO5 water-oxidizing complex (WOC) within cyanobacterial PSII. We combine these insights with recent knowledge gained from studies of the biogenesis and assembly of the WOC (called photoassembly) to arrive at a proposed chemical mechanism for water oxidation.
Guerra, LT, Xu Y, Bennette N, McNeely K, Bryant DA, Dismukes GC.  2013.  Natural osmolytes are much less effective substrates than glycogen for catabolic energy production in the marine cyanobacterium Synechococcus sp. strain PCC 7002 .. J. Biotechnol.. 166:65-75. Abstract
ADP-glucose pyrophosphorylase, encoded by glgC, catalyzes the first step of glycogen and glucosylglycer(ol/ate) biosynthesis. Here we report the construction of the first glgC null mutant of a marine cyanobacterium (Synechococcus sp. PCC 7002) and investigate its impact on dark anoxic metabolism (autofermentation). The glgC mutant had 98% lower ADP-glucose, synthesized no glycogen and produced appreciably more soluble sugars (mainly sucrose) than wild type (WT). Some glucosylglycerol was still observed, which suggests that the mutant has another, inefficient ADP-glucose synthesis pathway. In contrast, hypersaline conditions (1M NaCl) were lethal to the mutant strain, indicating that, unlike other strains, the elevated sucrose does not compensate for the reduced GG as osmolyte. In contrast to WT, nitrate limitation did not cause bleaching of N-containing pigments or carbohydrate accumulation in the glgC mutant, indicating impaired recycling of nitrogen stores. Despite the 2-fold increase in osmolytes, both the respiration and autofermentation rates of the glgC mutant were appreciably slower (2-4-fold) and correlated quantitatively with the lower fraction of insoluble carbohydrates relative to WT (85% vs. 12%). However, the remaining insoluble carbohydrates still accounted for a high fraction of the carbohydrate catabolized (38%), indicating that insoluble carbohydrates rather than osmolytes were the preferred substrate for autofermentation.
Guerra, TL, Levitan O, Frada MJ, Sun JS, Falkowski PG, Dismukes GC.  2013.  Regulatory branch points affecting protein and lipid biosynthesis in the diatom Phaeodactylum tricornutum. Biomass and Bioenergy. 59:306-315. AbstractWebsite
It is widely established that nutritional nitrogen deprivation increases lipid accumulation but severely decreases growth rate in microalgae. To understand the regulatory branch points that determine the partitioning of carbon among its potential sinks, we analyzed metabolite and transcript levels of central carbon metabolic pathways and determined the average fluxes and quantum requirements for the synthesis of protein, carbohydrates and fatty acid in the diatom Phaeodactylum tricornutum. Under nitrate-starved conditions, the carbon fluxes into all major sinks decrease sharply; the largest decrease was into proteins and smallest was into lipids. This reduction of carbon flux into lipids together with a significantly lower growth rate is responsible for lower overall FA productivities implying that nitrogen starvation is not a bioenergetically feasible strategy for increasing biodiesel production. The reduction in these fluxes was accompanied by an 18-fold increase in α-ketoglutarate (AKG), 3-fold increase in NADPH/NADP+, and sharp decreases in glutamate (GLU) and glutamine (GLN) levels. Additionally, the mRNA level of acetyl-CoA carboxylase and two type II diacylglycerol-acyltransferases were increased. Partial suppression of nitrate reductase by tungstate resulted in similar trends at lower levels as for nitrate starvation. These results reveal that the GS/GOGAT pathway is the main regulation site for nitrate dependent control of carbon partitioning between protein and lipid biosynthesis, while the AKG/GL(N/U) metabolite ratio is a transcriptional signal, possibly related to redox poise of intermediates in the photosynthetic electron transport system.
Kumaraswamy, GK, Guerra T, Qian X, Zhang S, Bryant DA, Dismukes GC.  2013.  Reprogramming the glycolytic pathway for increased hydrogen production in cyanobacteria: metabolic engineering of NAD+-dependent GAPDH. Energy Environ. Sci.. 6:3722-3731. AbstractWebsite
Catabolism of glycogen stored by cyanobacteria occurs during anaerobic auto-fermentation and produces a range of C1–C3 fermentation products and hydrogen via hydrogenase. We investigated both augmenting and rerouting this carbon catabolism by engineering the glycolysis pathway at the NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH-1), its major regulation site at the nexus of two pathways (Oxidative Pentose Phosphate pathway, OPP, and glycolysis/gluconeogenesis). Null (gap1::aphII) and overexpression (gap1+) strains of Synechococcus sp. strain PCC 7002 were constructed in order to produce more NADPH (via rerouting carbon through OPP) and more NADH (via opening the glycolytic bottleneck), respectively. For gap1::aphII quantitative analyses after four days of dark auto-fermentation showed undiminished glycogen catabolism rate, significant increases of intracellular metabolites in both OPP and upper-glycolysis, decrease in lower-glycolysis intermediates, 5.7-fold increase in NADPH, 2.3-fold increase in hydrogen and 1.25-fold increase in CO2vs. wild type (WT). These changes demonstrate the expected outcome of redirection of carbon catabolism through the OPP pathway with significant stimulation of OPP product yields. The gap1+ strain exhibits a large 17% increase in accumulation of glycogen during the prior photoautotrophic growth stage (gluconeogenesis), in parallel with a 2-fold increase in the total [NAD+ + NADH] pool, foreshadowing an increased catabolic capacity. Indeed, the rate of glycogen catabolism during subsequent dark auto-fermentation increased significantly (58%) vs. WT, resulting in increases in both NADH (4.0-fold) and NADPH (2.9-fold) pools, and terminal fermentation products, hydrogen (3.0-fold) D-lactate (2.3-fold) and acetate (1.4-fold). The overall energy conversion yield over four days from catabolized glycogen to hydrogen increased from 0.6 mole of hydrogen per mole of glucose (WT) to 1.4 (gap1::aphII) and 1.1 (gap1+) under headspace accumulation conditions (without hydrogen milking). These findings demonstrate the significant potential of metabolic engineering for redirecting carbon pathways for carbohydrate catabolism and hydrogen production in cyanobacteria.