Identification of Genes Involved in the Ciliary Trafficking of C. Elegans PKD-2

Bae, Y-K, Lyman-Gingerich J, Barr MM, Knobel KM.  2008.  

Journal:

Dev Dyn

Volume Number:

237

Pages:

2021-2029

Abstract:

Ciliary membrane proteins are important extracellular sensors, and defects in their localization may have profound developmental and physiological consequences. To determine how sensory receptors localize to cilia, we performed a forward genetic screen and identified 11 mutants with defects in the ciliary localization (cil) of C. elegans PKD-2, a transient receptor potential polycystin (TRPP) channel. Class A cil mutants exhibit defects in PKD-2::GFP somatodendritic localization while Class B cil mutants abnormally accumulate PKD-2::GFP in cilia. Further characterization reveals that some genes mutated in cil mutants act in a tissue-specific manner while others are likely to play more general roles in such processes as intraflagellar transport (IFT). To this end, we identified a Class B mutation that disrupts the function of the cytoplasmic dynein light intermediate chain gene xbx-1. Identification of the remaining mutations will reveal novel molecular pathways required for ciliary receptor localization and provide further insight into mechanisms of ciliary signaling.

Citation:
Bae, Y-K, Lyman-Gingerich J, Barr MM, Knobel KM.  2008.  Identification of Genes Involved in the Ciliary Trafficking of C. Elegans PKD-2. Dev Dyn. 237:2021-2029.